Speech Analysis
Elementary Speech Analysis

- **Speech analysis, or speech signal processing** transforms a speech waveform into a form which is more suitable for analysis:
 - **Human visual inspection** - for example by a phonetician, speech scientist, speech therapist or forensic phonetician
 - **Computer analysis** - for example for automatic speech recognition, speaker recognition or paralinguistic processing
Speech Analysis Continued

- **Suitable** might mean:
 - Amenable to human visual interpretation
 - Requiring a small number of bits per second for transmission across a comms channel, or storage
 - Compatible with the assumptions in a particular speech model for speech recognition
 - Analogous with the analysis performed in the human peripheral auditory system...
The Short-Term Spectrum

- Let t be a particular time

- A vertical ‘slice’ through the spectrogram represents distribution of power with respect to frequency over a time interval centred at t.

- Called the short-term spectrum at time t
 - From the perspective of the source-filter model, it tells us about the shape of the vocal tract at time t
 - From the perspective of human speech perception, we know that a similar analysis is performed in the cochlea in the initial stages of human speech perception
Calculating the short-term spectrum

- The short-term spectrum can be computed in various ways. However, they all involve:
 - Low-pass filtering
 - Analogue-to-Digital (A/D) conversion - convert analogue signal into a digital signal
 - Windowing - select a short section of speech centred at time t, and smooth its edges
 - Frequency Analysis - estimate distribution of power w.r.t frequency at time t.
A-D Conversion

- PCM (Pulse Code Modulation) measures and encodes the speech signal at regular sampling points.
Sample Rate

- **Nyquist’s theorem** – sample rate of $2N$ samples/s needed to encode a signal band limited at N Hz
- Human ear sensitive to frequencies up to around 20,000 Hz (hence 44 samples per second CD rate)
- But for **speech**:
 - High-quality \Rightarrow 10,000 Hz bandwidth \Rightarrow 20,000 samples/s
 - Bandwidth can be reduced to 4,000Hz (telephone bandwidth \sim 3,750Hz) \Rightarrow 8,000 samples per second
 - E.G: Some civil telephony uses 8-bit PCM at 8K samples per second - 64K bits per second
Calculation of short-term spectrum

![Graph showing short-term spectrum calculation with window size and time (t) axes.](image-url)
Windowing

Original signal \(s(n) \)

Hamming window

\[
w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi(n-1)}{N-1}\right)
\]

Windowed signal

\[
s'(n) = w(n)s(n)
\]
Frequency Analysis

- **Discrete Fourier Transform** (DFT) applied to windowed digital waveform \(\{s(n) : n = 1, \ldots, N\} \).

- Assuming \(N \) sample window, this results in an \(N/2 \) point **complex** spectrum \(\{S(f) : f = 1, \ldots, N/2\} \).

- Take **modulus** - \(N/2 \) point **power spectrum** \(\{P(f) = |S(f)| : f = 1, \ldots, N/2\} \). (phase ignored)

- Take **logarithm** to compress dynamic range, - **log-power spectrum** \(\{LP(f) = \log|S(f)| : f = 1, \ldots, N/2\} \).

- The log-power spectrum, computed over a short window centred at time \(t \), is referred to as the **short-term (Fourier) spectrum at time \(t \).**
Frequency Analysis

- This is **not** the only way to compute a short-term power spectrum
- Other approaches include:
 - **Filter-bank** analysis (based on a set of **band-pass** filters)
 and
 - **Linear Predictive Coding** (LPC-Spectrum) (c.f. tomorrow’s lecture)
Band-pass filter

- Filters encountered in speech processing typically result from, or simulate, physiological processes

Equivalent Rectangular Bandwidth (ERB)

Frequency (Hz)
Filter-bank

- Spectrum can be estimated as a vector of outputs from a bank of band-pass filters
- $y = y_1, \ldots, y_N$ where y_n is the output of the nth filter
Time - Frequency Resolution

- Back to the DFT…

- If the window is long then
 - number of points N in frequency analysis is large
 \Rightarrow the number of points in the spectrum is large,
 \Rightarrow fine frequency resolution, poor temporal resolution
 - long window \Rightarrow narrow-band frequency analysis - narrow-band spectra.
Time - Frequency Resolution

- If the window is **short** then
 - poor frequency resolution, but **fine temporal resolution**

 short window \Rightarrow **broad-band** frequency analysis - **broad-band spectra**.

- In summary:
 - **short** window \Rightarrow **broad-band** frequency analysis
 - **long** window \Rightarrow **narrow-band** frequency analysis
Bandwidth for implicit DFT filters

- The value of the spectrum at a particular frequency f can be thought of as the output of a band-pass filter, with bandwidth dependent on window size (in seconds)

- If the sample rate is N samples per second and the window length is L samples, then for a Hamming window, the implicit filter bandwidth is $2N/L$
Wide- and Narrow-band Spectrograms
Wide- and Narrow-band Spectrograms
Bandwidth of speech signals

- CD quality speech sampled at 44kHz, giving 22kHz bandwidth
- In the case of speech, almost all of the relevant information lies below 20kHz, so a sample rate of 20kHz gives good quality
- Restricting the bandwidth to 3.75kHz results in intelligible speech, but quality is degraded
- Intelligibility compromised at bandwidths below 3.75kHz
Speech (22kHz bandwidth)
Speech (11kHz bandwidth)
Speech (5.6kHz bandwidth)
Speech (2.8kHz bandwidth)
Continuity of Speech Patterns
Window Size and F_0 - adult male

- Consider a low-pitch adult male speaker
- F_0 typically between 50Hz and 200Hz
- Typical analysis window is around 20ms
- Hence, for a low-pitch adult male speaker with 50Hz F_0, window size corresponds to approximately one excitation pulse
- Spectrum shape depend on precise position of window w.r.t. pulse
- …Pitch synchronous analysis window?
Window size and F_0

- **CASE 1**: Adult male, 20ms analysis window

![Graph showing window 1 and window 2 with F0 values.](image)
Window Size and F_0 - female

- Now consider a high-pitch female speaker, or child
- F_0 typically between 100Hz and 400Hz
- Typical analysis window ~20ms
- Hence, for a female speaker with high, 400Hz F_0, window size corresponds to approximately 8 larynx pulses
- Spectrum shape will reflect vocal tract filter shape plus excitation spectrum
Window Size and F_0 - female

- **CASE 2**: female speaker, 20ms analysis window

![Graph showing 20ms analysis window](image-url)
Effect of Glottal Waveform

- For a voiced speech sound, the ‘measured’ short-term spectrum will be the result of two phenomena:
 - The vocal tract shape
 - The excitation signal from the larynx
- More precisely, the measured spectrum will be the **product** of:
 - The vocal tract filter
 - The spectrum of the excitation signal
Speech spectral analysis

VOCAL CORD PULSES

RADIATED WAVE

SOURCE SPECTRUM

VOCAL TRANSMISSION

SPECTRUM OF RADIATED VOWEL ɑ

RELATIVE LEVEL IN DB

FREQUENCY IN KILOCYCLES

Speech Technology Lab

EEM4R: Introduction to speech analysis
Narrow band spectrum
Wide band spectrum
Summary

- Brief introduction to speech signal processing
- Main goal was to review spectral analysis
- More details throughout the course