EEM1E1 Lecture 3

Lecture 3. Introduction to C programming II

In this lecture we will cover :

· Operators

· Input

· Preprocessor

· Header files

· Program style and readability

· Libraries

· Program compilation and linking

1. Operators
We have already seen an example C program where we perform an addition. C supports all of the arithmetic operators (+,-,* and /) as well as a number of other operators to perform arithmetic. The table below lists these operators and gives an example of their use.

	Operation
	Operator
	Example

	Addition
	+
	c=a+b;

	Subtraction
	-
	c=a-b;

	Multiplication
	*
	c=a*b;

	Division
	/
	c=a/b;

	Increment
	++
	++c;

	Decrement
	--
	--c;

	Modulus
	%
	c=a%b;

The effect of the first 4 operators is fairly obvious. Thus, for example, the code fragment :

simply multiplies the two variables, value1 and value2 together and assigns the result to the variable product.

Less obvious are the final 3 operators. We can give examples of their use as follows :

Increment

This adds one to the value of the variable. The increment can be applied before (prefix) or after (postfix) the variable is used.

Note that in the above example, applying the increment operator pre- or post- fix doesn’t alter its effect. The variable is incremented by one. However, if the variable is used, then the result will depend on whether it was used before or after incrementing :

Sample program output

count=4

In this case, the variable count is incremented after it is outputted. Compare with :

Sample program output

count=5

In this case, the variable count is incremented before it is outputted.

Decrement
This subtracts one from the value of the variable. The decrement can be applied before (prefix) or after (postfix) the variable is used.

The same comments apply regarding pre- and pot-fix application of the operator as in the case of the increment operator.

Modulus

The modulus operator assigns the remainder left over after a division. Thus, in the following code fragment, the variable count is assigned to the remainder of dividing 10 by 3 (which is 1).

Arithmetic/assignment operators

The arithmetic and assignment operators can be combined. Thus the operator += is equivalent to add equals. Thus the following program statements are the same :

Note that the assignment operator can also be combined with a number of other C operators such as the logical and bitwise operators in exactly the same way.

2. Input

There is a C function scanf() which allows the programmer to accept input from the keyboard. The following example program illustrates how this function is used.

Sample program output :

Type in a number

23

The number you type was 23

A few points to note about the use of scanf()
· scanf() takes 2 arguments in this example. The first (“%d”) specifies what type of data is expected. The ‘d’ character indicates that an integer is expected. The second argument specifies the variable into which the typed response will be placed. The ‘&’ preceding the variable name indicates the address of the variable. The significance of this will be explained when we discuss pointers.

· The list of format specifiers for scanf() is the same as for printf(). Hence %d, %c, %f and %e represent specifiers for an integer, a character, a floating point and exponential format respectively.

The following program illustrates the use of scanf() to read different data types :

Sample program output :

Enter an integer value: 35

Enter a character: A

Enter a floating point value: 70.6

The value of sum = 35

The value of letter = A

The value of money = 70.6

A few other points about scanf :

· C provides no error checking of user input. The user is expected to enter the correct data type. For instance, if a user entered a character when an integer value was expected, the program may enter an infinite loop or abort abnormally.

· It’s up to the programmer to validate data for correct type and range of values entered.

· When data is entered on the input line, whitespaces (blanks, tabs or newline characters) are ignored. Also, several items can be input on a single line as long as they are separated by at least one whitespace character. The following program illustrates this point :

Sample program output :

Type in 2 integers:

23
24

The numbers typed were 23 24

3. Preprocessor

C is unique among major languages in having a macro processor built into the compiler. This is known are the preprocessor and is implemented as a first pass over the C source code, running before the main compilation stage. The preprocessor performs the following tasks :

· It removes all comments
· It handles the #include statements
· It handles #define commands – these are macro definitions
(Note that the preprocessor is much more extensive and has many other features. However, the above facilities are probably the most important ones.)

The first of these is fairly obvious. From the following 2 items in the list, it should be clear that statements to be handled by the preprocessor start with the # symbol. It should also be made clear that preprocessor commands do not finish with a semi-colon unlike ordinary C statements. We will look at the #include command in the next section when we consider header files.

#define

The #define preprocessor command is used to make a program more readable. The example program below shows how to use #define :

Sample program output :

Type in 2 integers:

23
24

The numbers typed were 23 24

Sample program output :

Type in 2 integers:

23
24

Sample program output :

14 squared = 196

14 modulus 6 = 2

The above program uses the #define preprocessor command to perform macro substitution. The first example shows the use of #define in defining the constant FREEZING_POINT. Thus, the preprocessor scans the program and replaces every use of FREEZING_POINT with 32.0. Defining a constant in this way makes the program easier to update if the value of the constant changes and also defines all of the constants used by the program in one place. Note also that good programming style is to use capitals for constants defined by the #define statement.

The second example shows slightly more sophisticated use of #define. Thus, in the program square(value1) is expanded to value1*value1. We have to be a bit careful when using this approach as #define is not the same as a function call. Thus square(value1+1) does not expand to (value1+1)*(value1+1) as we might expect but expands to value1+1*value1+1 which is not the same. We could make this work by using brackets in our #define statement :

square(value1+1) would now indeed expand to (value1+1)*(value1+1). The final example shows how we can use 2 arguments in a macro and define the % (modulus) operator. Obviously we would, in practice, use %.

 4. Header files

Header files contain definitions of functions and variables which can be incorporated into any C program by using the pre-processor #include statement. Standard header files are provided with each compiler and cover a range of areas such as string handling, mathematical functions, and input/output.

To use any of the standard functions, the appropriate header file should be included. This is done at the beginning of the C source file. For example, to use printf() in a program, we must include the line :

This should be placed at the beginning of the source file. The pre-processor simply replaces the #include line with the contents of the file stdio.h. In this case, all of the function headers relating to input and output are found in this file. (We will look at function headers in a future lecture). All header files have the extension .h and generally reside in the /include subdirectory. Note also that the filename following the #include statement can either be in triangular brackets <…> or in double quotation marks “…” such as :

The use of the triangular brackets informs the compiler to search the compilers include directories for the specified file. The use of double quotation marks informs the compiler to search in the current directory for the specified file.

5. Program style and readability

The most common problems coming from beginner C programmers regarding programming style/readability are that their programs :

· Have poor layout

· Are hard to read

Programs will be quicker to write and easier to debug if they are laid out correctly. Consider the example program below :

This program is poorly indented and hard to read. It also contains a typo which will be picked up by the compiler. Can you spot it. It comes about from the poor use of capitalization in variable names. Let’s re-write the program using consistent indentation and fix the bug :

To improve readability still further, we may want to split up the printf statement into two so that it doesn’t overrun a single line. It is important to emphasise the importance of consistent indentation. When we start writing more complex programs involving iterations and conditional statements, good indentation will make it must easier to follow the logic in a program.

6. Libraries

All C compilers come with a library of useful functions. The programmer can simply call a library function instead of having to write the code himself. The most frequently used example is the math library which contains a list of useful mathematical functions such as sqrt, sin, cos, tan, exp, log and so on. The example program below gives an example of using the sqrt() function. The main thing to notice in this program is the #include <math.h> which defines all of the function headers of the functions contained in the math library. In the next section and in the laboratory exercises, you will see how to incorporate libraries when you compile your program.

When you write a C program, you automatically have access to one special library – the C standard library. You don’t have to do anything to include this library or incorporate the library functions – it is done automatically. The C standard library contains a host of functions for such things as memory allocation, string handling and type conversion.

7. Program compilation and linking

The process of compilation is to produce an executable file from the C source code. The diagram below shows this process for a UNIX and MS_DOS environment. Once the executable file (sometimes called the binary file) has been produced, it is then run by simply typing the filename at the keyboard.

However, the compilation process does involve a number of steps. We have already seen that the first stage of compilation is to apply the pre-processor. The second stage is to convert the source code into binary (an object file). The final quite complex stage is the linking. This resolves all undefined functions by looking in libraries or any other object file included by the programmer in the compilation stage. If there remain undefined function names, a linking error is flagged. These stages are summarized in the diagram below.

Exercises

1. Write a C program which takes two integer variables, value1 and value2 and prints out the remainder of value1 divide by value2 using the modulus operator. Add to your program a second line of code which prints out exactly the same value but not using the modulus operator.

2. Write a C program which computes and prints out the interest as a percentage of the balance in a bank account. Define the interest rate with the #define statement and input the balance as a floating point variable from the keyboard using scanf().

3. Write a C program to input the area of a circle and print out the radius of the circle. Try using the value of PI as defined in the math library. You will also need to use the sqrt() function.
EEM1E1. Introduction to Computing Systems and C Programming

int product;

int value1=10;

int value2=20;

product=value1*value2;

int count=4;

count++;		/* post-fix increment – count=5 */

++count;		/* pre-fix increment – count=6 */

int count=4;

printf(“count= %d \n”, count++);

int count=4;

printf(“count= %d \n”, ++count);

int count=4;

count--;		/* post-fix decrement – count=3 */

--count;		/* pre-fix decrement – count=2 */

int count;

count=10%3;	/* remainder of 10 divided by 3 */

#include <stdio.h>

int main(void)

{

int number;

printf(“Type in a number \n”);

scanf(“%d”,&number);

printf(“The number you typed was %d\n”, number);

return 0;

}

#include <stdio.h>

int main(void)

{

int sum;

char letter;

float money;

printf(“Enter an integer value: ”);

scanf(“%d”,&sum);

printf(“Enter an character: ”);

scanf(“%c”,&letter);

printf(“Enter a floating point value : ”);

scanf(“%f”,&money);

printf(“The value of sum = %d\n”, sum);

printf(“The value of letter = %c\n”,letter);

printf(“The value of money= %f\n”,money);

return 0;

}

#include <stdio.h>

int main(void)

{

int number1,number2;

printf(“Type in 2 integers: ”);

scanf(“%d %d”,&number1,&number2);

printf(“The numbers typed were %d %d \n”, number1,number2);

return 0;

}

#include <stdio.h>

int main(void)

 {

 int sum,fred,job;

 char Whoknows

	fred=9;

 sum=10; job=11;

 whoKnows=’A’;

printf(“Whoknows= %c, fred=%d,sum=%d,job=%d \n”,whoKnows,fred,sum,job);

return 0;

}

#include <stdio.h>

int main(void)

{

 	int sum,fred,job;

 	char whoknows

fred=9;

 	sum=10;

job=11;

 	whoknows=’A’;

printf(“whoknows= %c, fred=%d,sum=%d,job=%d \n”,whoknows,fred,sum,job);

return 0;

}

#include <stdio.h>

#define FREEZING_POINT 32.0

#define square(x) x*x

#define modulus(x,y) x-y*(x/y)

int main(void)

{

int value1=14;

int value2=6;

float current_temperature=FREEZING_POINT;

printf(“%d squared = %d ”, value1,square(value1));

printf(“%d modulus %d = %d ”, value1,value2,modulus(value1,value2));

return 0;

}

#define square(x) (x)*(x)

#include <stdio.h>

#include <stdio.h>

#include “my_declarations.h”

#include <stdio.h>

#include <math.h>

int main(void)

{

float number, root_number;

printf(“Input a number : ”);

scanf(“%f”,&number);

root_number=sqrt(number);

printf(“The square root of %f is %f \n”, number,root_number);

return 0;

}

UNIX

MS_DOS

Compilation process

Compilation process

Executable file

a.out

test.exe

test.c

test.c

test.c

test.o

compile

Libraries

Separate object files

link

executable

x+=5;			/* equivalent to x=x+5; */

loop-=1;		/* equivalent to loop=loop-1; */

time*=hours;	/* equivalent to time=time*hours; */

buffer/=2;		/* equivalent to buffer=buffer/2;	*/

