EEM1E1 Lecture 6

Lecture 6. Functions and procedural programming

In this lecture we will cover :

· Basic ideas about functions

· Function arguments, returning function values

· Array arguments to functions

· Local, global and static variables

· Function prototypes

· Introduction to procedural and top-down design

1. Basic ideas about functions

In C, a function is used to support a particular task. We have already seen a few examples of functions. printf() and scanf() are two functions written by the designers of C which perform particular tasks, namely output and input respectively. We can write our own functions within a C program. Splitting up a program into a collection of functions each of which performs a separate part of the total task, is called procedural programming and is a subject we will consider in more detail in a subsequent section.

A first example of a function and how it is called is shown below :

Sample program output :

This is the print_message function.

We can note the following points about this program :

· The function print_message() takes no arguments (we will look at function arguments in the next section.) This is indicated by the keyword void between the parentheses. Also, the function returns no value which again is indicated by the keyword void preceding the function name.

· To call a function, it is only necessary to write its name. The code associated with the function name is executed at that point in the program. When the function terminates, execution begins with the statement which follows the function name.

· In the above program, execution begins at main(). The only statement inside the main body of the program is a call to the code of function print_message(). This code is executed and, when finished, returns back to main().

2. Function arguments, returning function values

The general form of a function definition is as follows :

return_data_type function_name(data_type argument1, data_type2 argument2 ….)

{

statement1;

statement2;

.

.

return return_value;

}

In our first example, the return_data_type was void and the function had no arguments. The example below shows a function which takes an argument. In this case, the function area() computes the area of circle given the radius as an argument to the function :

Sample program output :

Input the radius: 2.0

The area of the circle is 12.570000

We can note the following points about this program :

· In the function definition float area(float radius) indicates that the function area() returns a floating point value and takes a floating point variable radius as an argument.

· In the main program, the function is called with an actual argument which in this case is the variable r. When the function is entered, the formal argument inside the function, in this case the variable radius, is assigned to the value of the actual argument, which is the value 2.0. Note that there is no need for the actual and formal argument variable names to be the same.

· The floating point return value of the function is assigned to the variable a in the main program.

A second example below shows a function calc_factorial() which calculates the factorial of an inputted integer.

In this case, the function calc_factorial() takes an integer argument and returns an integer.

Sample program output :

Input a number : 5

The factorial of 5 is 120

Does a function change the value of the arguments on function exit?

It is important to understand the effect a function has on its arguments. Consider the following function increment() which increments its argument :

Sample program output :

Input a number : 5

The number now equals 5

As can be seen from the sample program output, the function has not changed the value of its argument. This is a very important point to understand and comes about because the argument to the function increment() is passed by value.

The following diagram shows what is meant by passing by value.

The main point is that the argument passed to the function increment() is copied. Thus, on entry to the function, there exists two separate memory locations, each containing the value 5. One is in the main program and the second is inside the function. Only the contents of memory location representing the variable n in the function increment() is actually changed. In this case, the value inside it is incremented. The contents of the memory location inside the main program are left untouched.

An obvious question is what if we want our function to alter the value of its argument on exit. (One could argue that such a function with side effects is undesirable and is not allowed in some languages such as JAVA). In C we do this through the use of pointers which allow the argument to be passed by reference. This is described in a future lecture.

3. Array arguments to functions

Passing array arguments to functions is relatively straightforward. In the following program, a function maximum() takes an array of positive integers as an argument and returns the maximum value in the array :

Sample program output

Enter 5 numbers

6 3 67 45 23

The maximum value is 67

The function declaration int maximum(int values[5]) defines the function name as maximum and declares that an integer is returned and that it accepts a data type which is an array of 5 integers. Importantly, the values[] array in the main program is the same as the array v[] inside the function and is not a copy as in the case of simple variables. This means that any changes to the array v[] in the function maximum will update the original array values[].

The previous program is limited in that we must pass an array of 5 elements to the function. We can modify the program so that the number of elements in the array is an argument to the function also :

Sample program output

The maximum value is 67

Passing multidimensional arrays as arguments

If a multidimensional array is passed as an argument, then the number of columns must be specified in the array argument to the function but the compiler can work out the number of rows from the data passed. In the following program, a two dimensional array is passed to a function which simply works out the total sum of the array elements :

4. Local, global and static variables

We have already introduced variables in a previous lecture. Within a function, we can identify 3 different types of variables – local, global and static variables. It is important to understand the differences between them.

· Local variables

These variables only exist inside the specific function (or the main program) that creates them. They are unknown to other functions and to the main program. Local variables cease to exist once the function that created them is completed. They are re-created each time a function is executed or called. Local variables are the types of variables we have been using to date.

· Global variables

These variables get created once and once only when the program is run. They can be accessed by any function comprising the program. They do not get re-created if the function is re-called.

We will consider static variables later.

The program below shows how global variables get created and are used.

In this program, the variables value1 and value2 are global. They are visible from the point where they are declared to the end of the program. Thus, they are used in the function add_numbers() without any problem. In contrast, the variable result is a local variable in add_numbers() and hence is not visible outside this function. Similarly, the variable sum is local to the main program.

Generally speaking, global variables must be used carefully because they are accessible anywhere in the program. Thus, the programmer may unwittingly alter their value, for example, as a side effect in a function. Also, the programmer may unwittingly declare a local variable with the same name as a global variable. In this case, the global variable is hidden by the local variable.

Static variables

Static variables are created and initialized once, on the first call to the function. Subsequent calls to the function do not re-create or re-initialize the static variable. When the function terminates, the variable still exists but cannot be accessed outside of the function in which it was declared. This is in contrast to local variables (sometimes called automatic variables), which are automatically destroyed when the function terminates. The program below shows an example of using a static variable.

Sample program output

I have been called 1 times

I have been called 2 times

.

I have been called 10 times

The function count() keeps a track on the number of times it has been called through the use of the static variable times_called. The key point is that, when the function count() terminates, the variable times_called is not automatically destroyed but retains its value. Hence when the function is called again, the static variable does not need to be re-declared and the line static int times_called=0 is ignored. If on declaring a static variable, it is not at the same time initialized, then it is given a value of zero by default.

5. Function prototypes

So far we have seen that a function that is called in a main program has already been defined prior to being called. However, it is only necessary for the main program to have encountered the function prototype before it can be used in a main program. The definition of the function (in other words the C program statements making up the function) can be after the main program in the same file or even in a different file (we will see this in a future lecture when we look at program modules).

In the following program, a function circumference() has been written which computes the circumference of a circle given the radius. Note however, that the function is called from the main program before it is defined.

As it stands, this program will not compile (in fact it will produce a linker error). In order to correct this, the programmer must supply a prototype to inform the linker that a function named circumference will be supplied later. A function prototype supplies the signature of the function – in other words the types of arguments and return value of the function.

Note that the prototype can either be supplied before the main program, in which case the function name is visible from the whole of the file or it can be supplied inside the main program in which case it is only visible from the main program.

Header files

Function prototyping leads naturally to header files which we have already met. The standard libraries that we use in our C programs (such as the math library) supply a host of useful functions that we can use in our programs at any time. It would be very annoying to the programmer to have to supply a function prototype for every function in each library he/she uses.

This, thankfully, is not necessary since the prototypes for all of the functions have already been declared in the header files. For example, in <math.h> function prototypes such as the following appear :

Thus the prototypes are provided for all of the mathematical functions in the math library. By including the line #include<math.h>, the function prototypes are automatically provided and given global scope in the program.

6. Introduction to procedural and top-down design

The use of functions considerably simplifies both the design process and implementation (coding) of a large application program. Essentially, the concept of procedural design involves expressing a program design in terms of a number of functions. Each function solves a part of the overall problem. Normally, the design is expressed in a hierarchical fashion whereby a function is itself composed of a number of functions. This method of designing a program is known as top down design.

The whole subject of software design, including procedural and top down design, is considered in a separate course. However, by looking at a fairly simple example, we can see how such a design process readily maps to a C implementation involving functions.

Example

We want to design a C program which reads two NxN integer matrices, and then computes and outputs their matrix product. We can informally write a pseudo-code specification of the program :

Obviously this is an extremely coarse specification of the design and we would then need to think about refining each step of the design such as the matrix input and output stages. However, it should be fairly clear from this specification how we can map the design to individual C functions. Thus we can plan an overview of our C program by writing down the function headers of the functions we think we require.

This functional specification then allows us to produce an outline C program where we save the implementation of the functions until a later stage :

The final stage of the process is to implement the functions. This stage is left as an exercise.

What is the advantage of this procedural design approach involving thinking of the problem in terms of a number of C function calls? The alternative would be a monolithic implementation where the function calls are replaced with the actual functions’ implementation. We can list the advantages as follows :

· The monolithic implementation would have practically identical code in 2 places for inputting the two matrices. In the procedural approach, the code is in a single function.

· Any changes to the way the matrices are input or output are localised to changes to the appropriate function. (For example, we may want to read in a matrix column by column instead of row by row.) Hence the program is more easily maintained or updated.

· The rather complicated code for multiplying two matrices is hidden away inside the function multiply_matrices(). This makes the code more readable.

· We could easily extend this program to, for example, add or subtract a pair of matrices by adding extra functions. Indeed, we could build up a library of matrix functions and simply call functions from the library as required.

· We could readily test our program by testing each individual function in turn to see if it produces anticipated results. For example, we could call read_matrix() and write_matrix() in turn to see if the matrices input and output are the same. Thus a procedural design to a program automatically produces a natural way to test the resulting program.

Exercises

1. Write a C program which incorporates a function which takes two integer arguments, adds them together and returns the sum. The two numbers to be added are input from the keyboard in the main program. The main program also prints out the sum of the two numbers.

2. Write C functions maximum(x,y) and minimum(x,y) which return the maximum and minimum values of a pair of integer arguments x and y. Use these functions in a C program which repeatedly prompts for a an integer and returns the current maximum and minimum. The program terminates when a zero value is entered by the user.

3. Provide the code for the read_matrix(), write_matrix() and multiply_matrices() functions in our matrix product program.

EEM1E1. Introduction to Computing Systems and C Programming

#include <stdio.h>

void print_message(void)

{

	printf(“This is the print_message function. \n”);

}

int main(void)

{

	print_message();

	return 0;

}

#include <stdio.h>

#include <math.h>

float area(float radius)

{

	float a=PI*radius*radius;

	return a;

}

int main(void)

{

	float a;

	printf(“Input the radius: ”);

	scanf(“%f”,&r);

	

	a=area(r);

	printf(“The area of the circle is %f ”,a);

	return 0;

}

#include <stdio.h>

int calc_factorial(int n)

{

	int i, factorial_number=1;

	for (i=1; i<=n; i++)

		factorial_number*=i;

	return factorial_number;

}

int main(void)

{

	int number;

	printf(“Input a number: ”);

	scanf(“%d”,&number);

	

	printf(“The factorial of %d is %d \n”,calc_factorial(number));

	return 0;

}

#include <stdio.h>

void increment(int n)

{

	n++;

}

int main(void)

{

	int number;

	printf(“Input a number: ”);

	scanf(“%d”,&number);

	

	increment(number);

	printf(“The number now equals %d ”,number);

	return 0;

	

}

main program program

	

function increment() on entry

	

number=5

#include <stdio.h>

int value1, value2;		/* global variables */

int add_numbers(void)

{

	int result;

	result=value1+value2;

	return result;

}

int main()

{

	int sum;

	value1=10;

	value2=20;

	sum=add_numbers();

	printf(“The sum of %d + %d is %d \n”, value1,value2,sum);

	return 0;

}

n=6

n=5

number=5

main program

	

copy

1.

2.

function increment() on exit

	

#include <stdio.h>

void count(void)

{

	static int times_called=0;

	times_called++;

	printf(“I have been called %d times ”,times_called);

}

int main()

{

	int i;

	for (i=0; i<=10; i++)

		count();

	return 0;

}

#include <stdio.h>

#include <math.h>

int main(void)

{

	float radius,c;

	

	printf(“What is the radius of the circle? : ”);

	scanf(“%f”,&radius);

	c=circumference(radius);

	return 0;

}

float circumference(float radius)

{

	return 2.0*PI*radius;

}

#include <stdio.h>

#include <math.h>

float circumference(float);	/* function prototype */

int main(void)

{

	float radius,c;

	

	printf(“What is the radius of the circle? : ”);

	scanf(“%f”,&radius);

	c=circumference(radius);

	return 0;

}

float circumference(float radius)

{

	return 2.0*PI*radius;

}

double log(double), log10(double), exp(double);

double sqrt(double), pow(double);

double sin(double),tan(double),tan(double);

.

.

.

.

.

.

#include <stdio.h>

int maximum (int v[5])

{

	int max_value=0, i;

	for (i=0; i<5; i++)

		if (v[i]>max_value)

			max_value=v[i];

	return max_value;

}

int main(void)

{

	int values[5], i, max;

	printf(“Enter 5 numbers \n ”);

	for (i=0; i<5; i++)

		scanf(“%d”, &values[i]);

	

	max=maximum(values);

	printf(“The maximum value is %d \n”,max);

	

	return 0;

}

#include <stdio.h>

int add2darray(int array[][5], int nrows)

{

	int total=0, col, row;

	for (row=0; row<nrows; row++)

		for (col=0; col<5; col++)

			total+=array[row][col];

	return total;

}

int main(void)

{

	int values[][5]={{1,2,3,4,5}, {6,7,8,9,10}};

	int sum=add2darray(values,2);

	

	printf(“The sum of the array elements equals %d \n”,sum);

	

	return 0;

}

#include <stdio.h>

int maximum (int v[], int nelements)

{

	int max_value=0, i;

	for (i=0; i<nelements; i++)

		if (v[i]>max_value)

			max_value=v[i];

	return max_value;

}

int main(void)

{

	int values[]={5,34,2,67,32,21};

		

	max=maximum(values,6);

	printf(“The maximum value is %d \n”,max);

	

	return 0;

}

begin matrix product program

	input matrix A

	input matrix B

	compute P=A x B

	output matrix P

end matrix product program

void read_matrix (int m2[][3], int nrows);

void write_matrix(int m1[][3], int nrows);

void multiply_matrices(int m1[][3], int m2[][3], int m3[][3], int nrows);

void read_matrix (int m2[][3], int nrows);

void write_matrix(int m1[][3], int nrows);

void multiply_matrices(int m1[][3], int m2[][3], int m3[][3], int nrows);

int main(void)

{

	int matrix1[3][3];

	int matrix2[3][3];

	int matrix3[3][3];

	read_matrix(matrix1,3);

	read_matrix(matrix2,3);

	multiply_matrices(matrix1,matrix2,matrix3,3);

	write_matrix(matrix3,3);

	return 0;

}

