EEM1E1 Lecture 7

[image: image17.wmf]´

Lecture 7. Introduction to numerical methods and algorithms
In this lecture we will cover :

· Internal representation of data types

· Variable precision – roundoff error

· Truncation error

· Algorithm expression and design

1. Internal representation of data types

We have met the fundamental built in data types, char, int, float, and double which are most commonly used in C. Each variable of of any of these data types is represented internally in the memory of the computer as a bit pattern. The length of the bit pattern depends on the particular data type.

The table below shows the use normally made of each of these data types.

	Data type
	Suggested usage

	int
	Integral numbers such as –4,-3,-2,-1,0,1,2,3,4,….

	float
	Low/medium precision real numbers

	double
	Medium/high precision real numbers

	char
	Text characters such as ‘a’,’b’ ….

There are also a few less common data types, which we haven’t yet met. These and their suggested usage is shown in the table below :

	Data type
	Suggested usage

	short int
	Small to medium size integral numbers

	long int
	Medium to large size integral numbers

	long double
	Medium/high value/precision real numbers

In fact, it turns out that the use made of each data type depends on the number of bits used to store a variable of that particular data type. Thus, in general, the more the bits, the higher the precision and range of that data type.

The table below shows the bit-pattern size range of the main non-floating point data types for a computer with a 32-bit CPU (which is by far the most common these days).

	Data type
	No. bits
	Range

	char
	8 bits
	-128 to 127

	short int
	16 bits
	-32768 to 32767

	int
	32 bits
	-2147483648 to 2147483647

The float and double data types are used to represent floating point real numbers. The table below shows the bit-pattern size range of the floating point data types for a computer again with a 32-bit CPU.

	Data type
	No. bits
	Range

	float
	32 bits
	
[image: image1.wmf]±

+38 to
[image: image2.wmf]±

-38

	double
	64 bits
	
[image: image3.wmf]±

+308 to
[image: image4.wmf]±

-308

The figures below show how floating point numbers are represented in float and double formats in terms of an exponent and a mantissa :

[image: image18.wmf]p

2. Variable precision – roundoff error

One of the things that will be of interest to us in this lecture will be the precision of data types. Although we would like it to be, the precision of floating point numbers represented internally in our computer is not infinite and this sometimes impinges on the types of calculation we do in computer programs.

We define the machine precision
[image: image5.wmf]m

Î

(or machine accuracy) as the smallest (in magnitude) floating point number which, when added to the floating point number 1.0 produces a floating point result different from 1.0. Typically, for a 32-bit architecture this would be around 3
[image: image6.wmf]´

10-8. We can interpret the machine precision as the fractional accuracy to which floating point numbers are represented and it corresponds to a change of one bit in the least significant bit of the mantissa :

Note that
[image: image7.wmf]m

Î

 is not the smallest floating point number that can be represented on a machine. The smallest representable number depends on the number of bits in the exponent whilst
[image: image8.wmf]m

Î

 depends on the number of bits in the mantissa.

Any arithmetic operation involving floating point numbers introduces an error of at least
[image: image9.wmf]m

Î

 which is called roundoff error. If several floating point operations are performed in sequence, then roundoff errors can accumulate. Also, a common error in C programming is to peform equality operations using floating point operations. This is not advisable because of the possibility of roundoff errors producing unexpected results. The following C programming fragments illustrate this point :

The equality of two floating point numbers is only up to the roundoff error. A better approach would be to use the following statement :

The function fabs() computes the absolute value of its floating point argument.

3. Truncation error

Roundoff error is a characteristic of the computer hardware on which the program runs and the programmer can do nothing about it. It is a machine limitation. There is another kind of error which creeps in when we try to do numerical programming and that is truncation error. Typically when we encode algorithms in C (we will discuss algorithms in the next section), we are trying to compute discrete approximations to some desired continuous quantity. For example, when we perform an integration numerically, we approximate it (very accurately!) as a discrete sum of quantities. Another example is if we are trying to compute the value of e (exp(1)=2.71….) numerically. We can represent the value of e as an infinite summation. Using an algorithm, we have to truncate this sum to a finite number of terms. This inevitably introduces a truncation error.

In both examples above there is an adjustable parameter (for example the number of terms in the summation), which determines the size of the truncation error. Obviously, the greater the number of terms in the sum, the smaller the truncation error. Programmers who specialize in numerical computing spend most of their time worrying about how to minimize the truncation error.

Note that some numerical algorithms operate on integer quantities in which case we don’t have to worry about roundoff or truncation error. Indeed, a lot of effort in research is aimed at replacing floating point by integer (so called fixed-point) arithmetic so that these errors are removed from the calculation.

4. Algorithm expression and design

Algorithms are the step-by-step sequence of program instructions describing the task being carried out by the program. Al-Khowarizmi, one of the first great mathematicians wrote on the science of reduction and calculation in 825 AD. The word algorithm is derived from Al-Khowarizmi’s name.

Usually (but not always) algorithms are designed to carry out a numerical programming task such as finding the roots of a polynomial, carrying out an integration, or minimizing some function. Algorithms have also been developed for sorting (arranging groups of numbers or characters into ascending or descending order) as well as a host of other tasks which can be regarded as non-numerical. These will be considered in our advanced C programming course.

Below we will look at designing and coding a couple of fairly simple numerical algorithms. We will use a top-down design approach where appropriate and use simple pseudo-code in order to express and refine our design prior to coding.

We will look at the following algorithms :

· Perfect numbers

· A square root finder

Example 1 – Perfect numbers

This first example involves working with integers only and so we have no worries about roundoff or truncation errors.

A perfect number is when the sum of the factors of a number equals that number. 1 is the first (trivial) perfect number. The next one is 6 which has factors 1,2 and 3 which add up to 6. You should be able to quickly find the 3rd . The 4th perfect number is quite large and you probably won’t be able to find it by trial and error. Greek mathematicians coined the word perfect, as they felt that these numbers were somehow the building blocks of the universe. This is probably a slight exaggeration but, nevertheless, they are interesting and have been much studied by modern day mathematicians (see Simon Singh’s book Fermats Last Theorem).

Our aim is to write a C program which prints out the first few perfect numbers. The perfect numbers get very large very quickly so our program will only be able to practically print out the first 5 unless we are happy to let our program run for many hours!

We will use a top down design approach and pseudo-code in order to specify our design.

Design stage 1

This stage is fairly straightforward and is the outer controlling loop of the program.

Design stage 2

In this design stage, we refine the function that determines the ith perfect number.

Design stage 3

We can refine the function that determines if p is a perfect number. From the previous stage, we know that p>1.

There are a couple of points to note in this function :

· Initializing the variable factor_sum to 1 means that we have automatically taken the first factor of p as 1.

· We only need to check for factors up to the square root of the number. If we have a factor j of p, then obviously p/j is a factor. Thus all of the factors up to the square root of p automatically determine those factors above the square root of p.

Design stage 4

The final stage is to determine if j is a factor of p. This is straightforward and uses the modulus (%) operator.

Before we continue with the implementation it is important that we summarize the advantages of this approach :

· The pseudo-code representation of the design allows us to think abstractly and hierarchically about the algorithm without worrying about details of implementation. That comes later.

· We shall see below how easy it is to go from this pseudo-code representation to a functional specification of the algorithm.

· Note the importance of the indentation in indicating the control flow of the algorithm.

· Pseudo-code is an informal design tool. There are more formal ones that you will learn about in other courses which use design diagrams to represent control flow.

Functional specification

Given our pseudo-code representation we can go on quickly to specify the function headers.

The final stage is to then supply the coding for the functions and the main program.

Final program

Sample program output

How many perfect numbers are required? : 5

perfect number 1 is 1

perfect number 2 is 6

perfect number 3 is 28

perfect number 4 is 496

perfect number 5 is 8128

(5 perfect numbers is all that can be managed in reasonable computing time.)

A few points to note about the code :

· Note the use of the global variable last_perfect which stores the last perfect number found.

· Excluding the first (trivial) perfect number 1, all of the perfect numbers found so far have been even (although no one has ever been able to prove that this must be true). Assuming that it is true, we could easily double the speed of the algorithm by only considering even numbers as perfect number candidates. See if you can edit the code to do this.

· The 6th perfect number is 33550336. This took over 1 day of computing on a powerful Sun workstation to find!

Example 2 – A square root finder

Given an input value, we wish to design and implement an algorithm which computes the square root of that number without using the library function sqrt(). The algorithm we will use is called squaring the rectangle and has a nice simple geometrical interpretation as shown below. This algorithm will involve floating point arithmetic and truncation errors.

Suppose the number whose square root we want to find is x. Suppose we consider a rectangle of height h and width w. Obviously the area of this rectangle is h(w. If we make h=x/w then the area of the rectangle is x.

If this rectangle was in fact square, then the width of the rectangle would be the sqrt(x). We can test for this fact by checking if h equals w. Since we are using floating point variables, its risky to check for exact equality. Thus a more suitable measure of squareness would be |h-w|. If this is less than some small value, our rectangle is square and we have found the square root.

The question is, how can we update the values of h and w in order that our rectangle approaches the shape of a square but maintains the same area x? The diagram below gives us a clue – it can be seen that the required square will have a side length somewhere between that of h and w.

This suggests to us the following iterative algorithm expressed in pseudo-code :

Thus we update the rectangle width w by putting it mid-way between the current values of w and h. We then need to update the rectangle height h in order to force the new rectangle to have an area equal to x. There are two questions which need to be addressed from this pseudo-code representation of our square root algorithm

· How do we choose the convergence criterion?

· Does the algorithm converge at all and, if so, to the right value?

The first question we have already answered earlier. We simply test the value of |h-w| to see if it is below some small threshold. Obviously, the smaller this threshold, the more accurate will be the square root value found but the greater the number of iterations required to find the square root. Thus we introduce a truncation error into the final answerwhich will depend on the size of this threshold value.

The second question is more tricky and is a common problem in numerical programming. We have thought of an algorithm which seems intuitive but we don’t know for sure if it converges (in other words it reaches the point where |h-w| is less than the threshold chosen and the iterations can terminate). It is necessary to be able to prove that the algorithm converges in every case. It turns out that the algorithm does indeed converge. We will not go through the proof but we will give an indication how to go about proving it.

Demonstrating convergence

The convergence criterion is the value of
[image: image10.wmf]w

h

-

. For iteration n, let us indicate the current values of h and w by h(n) and w(n). During the next iteration, h(n) and w(n) are updated as follows :

[image: image11.wmf](

)

2

/

2

/

)

(

)

(

)

(

)

1

(

÷

ø

ö

ç

è

æ

+

=

+

=

+

n

n

n

n

n

w

w

x

w

h

w

[image: image12.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

+

=

÷

ø

ö

ç

è

æ

=

+

+

)

(

)

(

)

1

(

)

1

(

2

n

n

n

n

w

w

x

x

w

x

h

We can then determine the new value of the convergence criterion
[image: image13.wmf])

1

(

)

1

(

+

+

-

n

n

w

h

. After some algebra, we obtain :

[image: image14.wmf](

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

+

-

÷

÷

ø

ö

ç

ç

è

æ

+

=

-

+

+

)

(

2

)

(

2

)

(

)

(

)

1

(

)

1

(

2

2

n

n

n

n

n

n

w

w

x

x

w

xw

w

h

Convergence is then guaranteed if
[image: image15.wmf])

(

)

(

)

1

(

)

1

(

n

n

n

n

w

h

w

h

-

<

-

+

+

 for any value of x. This can be showed after a fair bit of algebra which is left as an exercise to the more mathematically minded of you.

The above proof is meant only as an indication of the sort of work which goes into developing a new numerical algorithm and the issues involved in demonstrating its convergence.

Final program

Sample program output

Input the number: 2.0

The square root of 2.000000 is 1.414216

We can make the following comments about the program :

· Note the use of the TOLERANCE and LIMIT constants which define the convergence value of |h-w| and hence the truncation error and the maximum number of iterations.

· It’s interesting just to check our convergence proof by actually printing out the values of |h-w| during each iteration. It is very easy to edit the program in order to make it do this. An example run in this case is shown below :

Sample program output

Input the number : 400

|h-w|= 399.000000

|h-w|= 198.504990

|h-w|= 97.296791

|h-w|= 44.994419

|h-w|= 16.813702

|h-w|= 3.257664

|h-w|= 0.132215

|h-w|= 0.000221

|h-w|= 0.000000

The square root of 400.000000 is 20.000000

As can be seen, the program converges nicely to its final answer.

Exercises

1. A Pythagorean triplet is a triplet of numbers that would be the lengths of the 3 sides of a right-angled triangle. For example (3,4,5) is a Pythagorean triplet since
[image: image16.wmf]2

2

2

5

4

3

=

+

. Design and implement a program which is able to print out as many of these triplets as possible. How many can you find?

2. Design and implement a program which outputs all of the prime numbers up to and including some inputted value. The algorithm to be used will simply test all of the numbers up to the square root of the candidate prime to see if any of them are factors (using a similar technique as was used in the perfect number example). Can you think of a much more efficient way of doing it?

3. Write a program which is able to numerically compute the cube root of a number using a similar technique to the square root algorithm. Note that you will find it useful to make a function (say square_root(x)) out of the square root algorithm and use this in your cube root program.

EEM1E1. Introduction to Computing Systems and C Programming

32 bit float

Sign bit

bit no.

Exponent

Mantissa

0

22

30

31

63

62

51

Exponent

Mantissa

bit no.

Sign bit

64 bit double

0

31

30

22

Exponent

Mantissa

bit no.

Sign bit

0

Determines machine precision

int main(void)

{

	float x1, x2;

	.

	.

	if (x1==x2)	/* risky */

	{

		.

		.

	}

	.

}

#define M_P 3� EMBED Equation.3 ���10-8

int main(void)

{

	float x1, x2;

	.

	.

	if (fabs(x1-x2)<M_P)		{

		.

		.

	}

	.

}

Input N – the number of perfect numbers to be calculated

for i=1 to N

	calculate the ith perfect number

	print out the ith perfect number

exit the program

calculate the ith perfect number

	if i equals 1

		return 1

	else

		p=(i-1)th perfect number +1

		while p is not a perfect number

			p++

		return p

		

		

Is p a perfect number?

	factor_sum=1

	for j=2 to � EMBED Equation.3 ���

		if j is a factor of p

			factor_sum+=j

			factor_sum+=p/j

	if factor_sum equals p

		return TRUE

	else

		return FALSE

		

		

Is j a factor of p?

	if p modulus j equals 0

return TRUE

else

return FALSE

		

		

int perfect(int i);		/* Determine the ith perfect number */

int is_perfect(int p);	/* Determines whether its p is a perfect number */

int is_a_factor(int j, int p);	/* Determines whether j is a factor of p */

/************************************/

/*	Author: Mike Spann			*/

/*							*/

/*	Version: 1 20/9/00			*/

/*							*/

/* 	file: perfect.c				*/

/*							*/

/*	A program to print out the first		*/

*	few perfect numbers			*/

/***********************************`*/

#include <stdio.h>

#include<math.h>

int perfect(int);

int is_perfect(int);

int is_a_factor(int,int);

int last_perfect;

int perfect(int i)

{

	int p;

	if (i==1)

	 	return 1;

	else

	{

	 	p=last_perfect+1;

	 	while(!is_perfect(p))

	 		p++;

	}

	return p;

}

int is_perfect(int p)

{

	int j;

	int factor_sum=1;

	for (j=2; j<=(int)sqrt((double)p); j++)

	{

	 	if (is_a_factor(j,p))

	 	{

	 		factor_sum+=j;

	 		factor_sum+=p/j;

	 	}

	}

	if (factor_sum==p)

	 	return 1;

	else

	 	return 0;

}

int is_a_factor(int j, int p)

{

	return ((p%j)==0);

}

int main(void)

{

	int i,n,p;

	printf("How many perfect numbers are required? : ");

	scanf("%d",&n);

	printf(“\n”);

	for (i=1; i<=n; i++)

	{

	 	p=perfect(i);

	 	last_perfect=p;

	 	printf("perfect number %d is %d \n",i,p);

	}

	return 0;

}

area=x

w

h=x/w

/************************************/

/*	Author: Mike Spann			*/

/*							*/

/*	Version: 1 20/9/00			*/

/*							*/

/* 	file:square_root.c				*/

/*							*/

/*	A program to find numerically the	*/

/*	square root of a number			*/

/*************************************/

#include <stdio.h>

#include<math.h>

#define TOLERANCE 0.00001

#define LIMIT 100

int main(void)

{

	float w,h,number;

	int count;

	printf("Input the number : ");

	scanf("%f", &number);

	w=1.0;

	h=number/w;

	count=0;

	while ((fabs(h-w)>TOLERANCE)&&(count<LIMIT))

	{

	 w=(h+w)/2.0;

	 h=number/w;

	 count++;

	}

	printf("The square root of %f is %f \n",number, w);

	return 0;

}

h

w

h=x/w

square with area=x

set w=1

set h=x/w;

while not yet converged

	w=(h+w)/2

	h=x/w

sqrt(x)=w

_1030874974.unknown

_1031036583.unknown

_1031036816.unknown

_1031036863.unknown

_1031036977.unknown

_1031036690.unknown

_1031036425.unknown

_1030528682.unknown

_1030779673.unknown

_1030867074.unknown

_1030779629.unknown

_1030528624.unknown

