EEM1E1. Lecture 2

Lecture 2. Introduction to C programming I

In this lecture we will cover :

· A short history of the C programming language

· Output

· Variables

· Comments

· Data types

· Assignment and initialisation

1. A short history of C

C was designed at the beginning of the 1970’s as a systems programming language by Brian Kernighan and Dennis Ritchie. It was used to write the first version of the Unix operating system. An operating system is a huge computer program which controls the different aspects of the operation of a computer such as data I/O and scheduling.

Before C came along operating systems had been written in assembler which made them cumbersome and not portable to different hardware.

In the early 70’s, Unix grew rapidly as an operating system and is still widely used today. Every Unix system was (and is) shipped with a C compiler so C was adopted as a language for implementing much general purpose application software on Unix systems such as editors, word processors and databases.

C spread beyond Unix and, for example, nearly all of MS-Windows is written in C and all of the best selling PC and Macintosh applications are written in C.

Over the past 20 years C has proved ideal for a wide range of programming activities from large scale software engineering projects involving teams of programmers writing thousands of lines of code to a program to control a single piece of hardware.

In the mid 80’s, Bjarne Stroustrup of AT&T Bell Labs designed an Object Oriented enhanced version of C which he called C++. C++ is upwardly compatible with C and has practically taken over as the programming language of the new millenium (sorry to all you Java programmers!)

Also during the 80’s, ANSI (the American national Standards Institute) convened a committee with a brief to revise and update C. In 1989, ANSI published a new definition of C. Kernighan and Ritchie then rewrote and reissued their book to cover ANSI C. Today most C compilers implement the ANSI version of C instead of the older K&R or Standard C.

Today, ANSI C is a mature, powerful and extremely portable language and still one of the most widely used in the computing industry.

Why/why not C?
Why C?

· General purpose

· Good access to low level input/output

· Portable

· Supports most commonly used software design techniques

· Widely used commercially

· Provides a good basis for learning C++ and JAVA

Why not C?

· Syntactically awkward at times (in comparison to PASCAL for example)

· Doesn’t easily support object-oriented programming

· Not particularly robust compilers and hence not that suitable for safety critical applications

2. Output

Let’s take a look at our first C program.

A few points to note about this program.

· The program starts with the line int main(void) which informs the computer where the program actually starts. The int and void are reserved words in C. void indicates that no arguments are passed to the program from the operating system. int indicates that the program returns an integer back to the operating system. This allows the program to indicate to the operating system that it has run normally and without any errors.

· The braces { and } signify the beginning and end segments of the program.

· The statement #include <stdio.h> is to allow the use of the printf statement. We will say a lot more about this in a future lecture.

· The statement printf(…) is actually a function in C which is used for printing variables and text to the screen. The text appearing in double quotes “” are printed without modification. Exceptions are text following \ and % characters which are modifiers. In our example \n actually means print a new line. Thus our program simple prints the statement :

Programming in C is easy.

and the cursor is set to the beginning of the next line.

· The statement return 0; simply returns a value of zero back to the operating system. Operating systems can interpret return values of programs to indicate normal behaviour or some error condition.

· A final point to note is that all C statements are terminated by a semi-colon ;

3. Variables

In C, variables are used to store values which can be changed during the course of execution of the program. A variable has a name such as value, sum, total, current_account_balance etc. Note that variable names are case sensitive so Sum and sum are different variable names.

Let’s look at a program incorporating a variable :

Sample program output :

The sum of 200 and 25 is 225

Points to note :

· The basic format for declaring a variable is :

data-type var1, var2, var3 ….. ;

· C has 4 built-in data-types : character, integer, floating-point, double-precision floating point. These are indicated by the C key words char, int, float and double respectively.

· In the printf statement, the modifier % is used to enable the display of variable values. In this example, printf(…) contains 2 arguments, the text inside the “” and sum. When the program is executed, the text inside the “” is printed up to the % character. It then looks at the next argument which is sum, displays it’s value, and then continues displaying the rest of the text inside the “”, in this example, a newline character indicated by \n. The ‘d’ character after the % indicates that the next argument to be displayed is a decimal integer.

Let’s look at a second example using variables :

Sample program output

10
25

In this case, the modifier \t in the printf statement indicates that a tab character is to be placed between the 2 integer values.

Variable names

Variable names must begin with a character or underscore and may be followed by any combination of characters a-z or A-Z, or the digits 0-9. The following is a list of valid variable names.

Total

exit_flag

sum1

_valid51

total_count_to_date

code6789

In choosing a variable name bear in mind the following:

Meaningful names for variables make programs :

· self-documenting

· easier to understand

· easier to read

Note also that the length of a variable name doesn’t affect the amount of memory used by a program so don’t feel restricted to, say, 8 characters per variable name.

4. Comments

Comments in a C program increase the readability and understanding of a piece of code. Comments are text in the program inserted between /* and */. Thus a comment looks like :

/* This is a comment. */

Note that comments must not be nested. Thus the line :

/* This is a comment. /* This comment is inside */ oops! */

will cause a compilation error.

What are comments used for ?

· Documentation of variables and their usage

· Explaining difficult sections of code

· Describes the program, author, date, modification changes, revisions etc.

· Copyrighting

Thus, we could embellish our first example program above as follows :

5. Data types

C has the following 4 basic data types :

· Integer

These are whole numbers, both positive and negative. The keyword used to define integers is int. An example piece of code which declares an integer data type and assigns it a value is as follows :

· Floating point

These are numbers which contain fractional parts both positive and negative. The keyword used to define float variables is float. An example piece of code which declares a floating point data type and assigns it a value is as follows :

· Double precision

These are exponential numbers both positive and negative. The keyword used to define float variables is double. An example piece of code which declares a double precision data type and assigns it a value is as follows :

In this case, big_value is given a value of 3.5(1020.

· Character

These are single characters. The keyword used to define character variables is char. An example piece of code which declares a character data type and assigns it a value is as follows :

A character value is specified by enclosing a single character in single quotes (as opposed to double quotes for a text string).

An example program which illustrates the use of each data type in a single program is given below.

Sample program output :

value of sum = 10

value of balance = 23.650000

value of letter = A

value of elec_charge = 1.600000e-19

As can be seen above, the floating point and double precision variables are displayed to 6 decimal places. It is important to emphasise that this is NOT the accuracy to which the number is actually stored. As we shall see in a future lecture, these numbers are stored to a much higher precision than 6 decimal places. We can easily adjust the number of decimal places which are printed by changing what follows the % modifier in the printf statement :

Sample program output :

value of balance = 23.65

value of e = 1.60e-19

The %.2f and %.2e modifiers indicate 2 decimal places to be printed as can be seen.

Data type conversion
We have to take care when mixing statements containing integer and floating point values. Take a look at the following program which divides two integer values :

Sample program output :

The value of 25 divided by 10 is 2.000000

As can be seen, the value of answer has been truncated to an integer because integer division has taken place. In order to ensure a correct result, we must cast the integers to floating point before carrying out the division.

Sample program output :

The value of 25 divided by 10 is 2.500000

Now floating point division takes place and the correct result is produced.

6. Assignment and initialisation

We have already seen example of assignment of values to variables. The following two statements are examples of assignments :

As an alternative, initialisation both declares the variable and gives it an initial value all in one statement. Thus we can replace the above statements with the following :

The following program shows the pitfall of using a variable before it has been assigned a value :

Sample program output :

count = 2694

letter = f

As can be seen, the values that the variables take on at declaration but before they are assigned a value are non-zero. A common beginner programmer error is to leave variables un-initialised. Worse is that if we run the program a second time, the variables may well take on different values. Thus the importance of initialising variables should be clear.

Exercises

1. What will the following programs output?

2. What is the output of the following program?

3. Why are the variable names in the following list invalid?

value$sum

exit flag

3down

char

EEM1E1. Introduction to Computing Systems and C Programming

#include <stdio.h>

int main(void)

{

	printf(“Programming in C is easy. \n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

	int sum;

	sum=200+25;

	printf(“The sum of 200 and 25 is %d \n”, sum);

	return 0;

}

#include <stdio.h>

int main(void)

{

	int value1, value2;

	value1=10;

	value2=25;

	printf(“%d\t%d \n”, value1, value2);

	return 0;

}

/**/

/* First example program for EEM1E1 				*/

/* Author: Dr. Mike Spann 						*/

/* Date: 21/8/00								*/

/* Revision: 1								*/

/*										*/

/* Notes. This program displays a text string and demonstrates	*/

/* the use of the printf function					*/

/**/

#include <stdio.h>

int main(void)

{

	printf(“Programming in C is easy. \n”);

	return 0;

}

int sum;

sum=32;

float temperature;

temperature=46.6;

double big_value;

big_value=3.5E+20;

char letter;

letter=’A’;

#include <stdio.h>

int main(void)

{

	int sum;

	float balance;

	char letter;

	double elec_charge;

	sum=10;			/* assign an integer 	*/

	balance=23.65;		/* assign a float 		*/

	letter=’A’;			/* assign a character	*/

	elec_charge=1.6E-19;	/* assign a double		*/

	printf(“value of sum = %d \n”, sum);

	printf(“value of balance = %f \n”, balance);

	printf(“value of letter= %c \n”,letter);

	printf(“value of elec charge= %e \n”,elec_charge);

	return 0;

}

#include <stdio.h>

int main(void)

{

	float balance;

	double e;

	balance=23.65;	/* assign a float 		*/

	e=1.6E-19;		/* assign a double		*/

	printf(“value of balance = %.2f \n”, balance);

	printf(“value of e= %.2e \n”,e);

	return 0;

}

#include <stdio.h>

int main(void)

{

	int value1, value2;

	float answer;

	value1=10;

	value2=25;

	answer=value2/value1;

	printf(“The value of %d divided by %d is %f \n”, value2, value1, answer);

	return 0;

}

#include <stdio.h>

int main(void)

{

	int value1, value2;

	float answer;

	value1=10;

	value2=25;

	answer=(float)value2/(float)value1;

	printf(“The value of %d divided by %d is %f \n”, value2, value1, answer);

	return 0;

}

char letter;

int count;

letter=’A’;	/* assignment */

count=10;	/* assignment */

char letter=’A’;	/* initialisation */

int count=10;	/* initialisation */

#include <sdtio.h>

int main(void)

{

char letter;

int count;

printf(“count = %d \n”, count);

printf(“letter = %c \n”,letter);

return 0;

}

#include <stdio.h>

int main(void)

{

	printf(“Programming in C is easy \n”);

	printf(“But C++ isn’t!! \n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

	printf(“C programming is fun …..”);

	printf(“Honestly!! \n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

	printf(“Hey Jude \n Don’t let me down \n Take a sad song ….”);

	return 0;

}

#include <stdio.h>

int main(void)

{

	int value1, value2, sum;

	value1=30;

	value2=18;

	sum=value1+value2;

	printf(“The sum of %d and %d is %d \n”, value1, value2, sum);

	return 0;

}

