EE1E1 Lecture 1

Lecture 1. Introduction to computers and computing

In this lecture we will cover :

· Course overview

· Introduction to computer architecture

· Introduction and history of programming languages

1. Course overview

Objectives

On successful completion of this module, the student will be able to :

· Describe the basic operation of a computer and understand the concepts of computer programming languages

· Design and test computer programs using basic constructs of the ANSI C programming language

· Understand elementary numerical methods (e.g. precision & errors) and their relationship to programming

Recommended books

	Book title/comment
	Author
	Publisher

	The Indispensable Guide to C with Engineering Applications

Good general guide to C with easy to follow examples
	Paul Davies
	Addison-Wesley

ISBN 0-201-62438-9

	‘C’ by Dissection (2nd Edition)

Good intermediate level textbook
	Al Kelly and Ira Pohl
	Benjamin Cummings

ISBN 0-805303140-9

	The C Programming Language

Good reference text by the developers of C
	Brian Kernigan and Dennis Ritchie
	West Publishing Company

ISBN 0-31489563

Teaching methods

8 hours lectures. A summary of the lecture content is as follows.

Lecture 1 – Introduction to computers and computing

· Course overview

· Introduction to computers and computer architecture

· Introduction to programming languages

Lecture 2 – Introduction to C programming I

· A short history of the C programming language

· Output

· Variables

· Comments

· Data types

· Assignment and initialisation

Lecture 3 – Introduction to C programming II

· Operators

· Input

· Preprocessor

· Header files

· Program style and readability

· Libraries

· Program compilation and linking

Lecture 4 – Program control

· Iteration – for loops

· The while loop

· The do…while loop

· Selection – the if, if…else and switch clauses

· Logical and relational operators

· Conditional expressions

Lecture 5 – Arrays

· Introduction to data abstraction and modeling

· Introduction to arrays

· Declaring arrays

· Initializing arrays

· Multi-dimensional arrays

· Character arrays – strings

Lecture 6 – Functions and procedural programming

· Basic ideas about functions

· Local, global and static variables

· Function prototypes

· Introduction to procedural and top-down design

Lecture 7 – Introduction to numerical methods and algorithms

· Internal representation of data types

· Variable precision – roundoff errors

· Algorithm expression and design

Lecture 8 – Course review and revision

20 hours laboratory. These will comprise small programming exercises as well as a major C programming project.

Assessment

This module is jointly assessed with EE1E2 which deals with advanced C programming and algorithmic problem solving.

The assessment for the two modules is as follows :

· 50% by a 1and ½ hour exam in May/June

· 20% by laboratory work and in-class tests

· 30% by project work

Details about how to present reports for the programming laboratory will be given in a separate handout to accompany the laboratory.

2. Introduction to computers and computer architecture

A computer consists of :

· Hardware

· Software

The hardware is the electronics of the computer which interprets the instructions given to it by the programmer. These instructions are in the form of machine code which is a string of binary digits (1’s and 0’s). We will see shortly how this machine code is generated from the programmer’s instructions.

We can look in more detail what constitutes the hardware of a computer :

· Memory – storage for instruction

· CPU – carries out these instructions

· Input/Output – communiction with the outside world (keyboard, screen, printer, scanner etc)

We can look in a bit more detail at the internal structure of a computer because this will give us more of an insight into how we actually program them. The diagram below shows that machine code instructions are moved around a computer on 2 buses, the data bus and the address bus. Think of a bus as just a piece of electrical cable containing a number of wires. The number of wires in a cable depends on the bus width (usually 8, 16 or 32) which is the number of binary digits in the machine code word.

The diagram above makes a number of points. The first is that all computers are controlled by a clock which is the ‘heartbeat’ of the computer. Every action the computer takes is synchronised to the beats of the clock. Typically a clock will produce a 0-5V square wave at frequencies between 200 MHz – 1GHz depending on the speed of the computer.

Program instructions are stored in the memory. The computer needs 2 pieces of information in order to execute the next instruction. The machine coded instruction itself (which is sent from memory to the CPU on the data bus) and where in memory (the memory address) the next instuction is to be found. This is sent from the CPU to the memory on the address bus.

The final point to make is that the values in computer memory represent every piece of information associated with the instruction. For example, suppose we ask the computer to add two numbers x and y. We would need to encode the following pieces of information in binary :

· The machine code word which tells the CPU to perform an addition

· Either the number x or it’s address in memory

· Either the number y or it’s address in memory

The situation is a bit more complicated as also, within the instruction, the address of the memory location where the sum of x and y is to be placed. This will most probably be used in subsequent computations carried out in the program.

Examples of computers in use today

· Personal computer (PC) (Pentium or Mac)

· Mainframe (Cray)

· Workstation (Sun)

A PC and a workstation would be used either as a standalone machine or (as in the case of the computers you will use in the lab) as a network with a central server. In this case, a special computer (known as a server) provides facilities such as central storage for all of the client machines on the network.

Embedded computer

This is a special computer that is integral to the application. In this case, the device cannot be re-programmed as the program has been designed to carry out one function.

Examples of embedded systems :

· Microwave oven

· Mobile phone

· Cash machine

· CD player

· Washing

· Most electronic systems

3. Introduction to programming languages

We have seen that a computer can only interpret strings of binary digits (machine code). In principle, a programmer could input this machine code directly into the computer. However, in practice, it would be virtually impossible for any programmer to write anything other than very trivial programs directly in machine code.

The concept of a programming language is to allow the programmer to write instructions in something more intelligable to a human being than machine code and get a second computer program (a compiler) to convert this sequence of instructions into machine code.

Actually, the situation is a bit more complicated than this. The compiler usually converts the program written in a high level language (such as C), to assembler code, often referred to as a low level language. This assembler code is much more specific to the particular machine on which it is run whereas the high level language can run on many different machines. A single instruction in a high level language will usually comprise several assembler instructions. You will learn how to program in assembler code when you work with micro-processors.

Thus a more realistic view of generating maching code might be as follows :

We will discuss in more detail in the next lecture just what we mean by compile and link.

Programming languages

Today there are many high level programming languages (and even more assembler languages!) Example programming languages include the following :

· Basic

· Fortran

· Cobol

· Algol

· Pascal

· C

· C++

· JAVA

· Smalltalk

· Ada

Evolution of programming languages

In the early days of computers (1950’s), programming was done directly in machine code by inputting the instructions using hand switches located at the front of the computer. Things have moved on a bit since then! We can plot the evolution of computer languages over the past few decades :

Application programs

These are computer programs, usually written in a high level language such as C, and designed to carry out a specific task. You have probably already (maybe unwittingly) used application programs already.

Examples of application programs include :

· Wordprocessor

· Speadsheet

· Powerpoint

· Computer games

· Billing systems

· Photoshop

· Internet browser

All of these applications are massive computer programs involving tens of thousands of lines of code and teams of programmers.

Operating systems

An operating system is a very special computer program which controls the computer CPU and all of the peripherals. In particular, the operating system provides the following services to the user of the computer system :

· Security of data/application

· System initialisation

· Program execution

· Program development

· House keeping such as looking after disc storage

· Managing peripherals

· Network services such as email

Examples of operating systems include :

· MSDOS

· Windows

· UNIX

EE1E1. Introduction to Computing Systems and C Programming

Memory

Central processing unit (CPU)

Input

Output

Computer program

Compiler

Machine code

Machine code

10001101

10111011

Assembler code

MOV r1,A

ADD A,2

Fortran

1957

Cobol

1959

Basic

1964

Lisp

1960’s

Microsoft Basic

1975

Visual Basic

1990’s

Pascal

1970’s

Algol

1960

Modula 2

1980

C

1972

Ada

1980’s

C++

1980’s

Prolog

1972

Forth

1979

CPU

Memory

Clock

Address

Address bus

Data bus

Ticks

Ticks

Contents

0

1

2

1022

1023

11011011

11110001

10001001

Code for add

Address or value of x

Address or value of y

Server

Client 1

Client 2

Client 3

Printer

Central disc

High level language computer program

Machine specific assembler code

compile

 & link

Machine code

assemble

