EEM1E1 Lecture 4

Lecture 4. Program control

In this lecture we will cover :

· Iteration – for loops

· The while loop

· The do… while loop

· Condition statements – the if, if else and switch clauses

· Logical and relational operators

· Conditional expressions

1. Introduction
So far all of our programs have been extremely simple. They have just been a series of C program lines involving I/O and variable definition/declaration executed one after the other, in sequence.

In this lecture, we will write more sophisticated C programs in which program control (the order in which program lines are executed) is not just a simple sequence.

There are two main ways of achieving and they are through :

· Iteration

· Selection
Iteration repeatedly executes a number of C program lines and selection chooses which set of program lines to execute depending on the result of some conditional statement. There are a number of C programming constructs which support iteration and selection and each is considered in detail on the following pages.

2. Iteration – for loops

The basic format for the for statement is :

for (start condition; continue condition; re-evaluation)

program statement;

As an example, the following program simply loops 10 times and prints out the integers 1..10 :

Sample program output :

1 2 3 4 5 6 7 8 9 10

Note the following points about this program :

· The program declares an integer variable count which is initialized to 1 in the loop statement.

· The for loop continues whilst the condition count <= 10 evaluates as TRUE.

· Since the variable count has been initialized to 1, this condition is TRUE and so the printf() statement is executed.

· Next, the remaining statement, count++, of the for is executed and the variable count is incremented.

· Control now passes back to the conditional test count <= 10 which still evaluates as TRUE since count now equals 2. Hence the printf() statement is once again executed.

· This sequence is repeated 10 times. When count has reached the value 10 (and the 10th printf() has been executed), count is again incremented in the for loop so that it’s value becomes 11. Now the statement count<=10 evaluates as FALSE and the for loop terminates.

· Program control passes to the statement immediately following the for loop and the newline character is printed. The program terminates.

Below are shown two further examples of the use of for loops. The first program is similar to our previous program only this time the letters A..E are printed. Note that this program shows that, even though the variable letter is declared as a char, it can still be incremented as it is stored internally in ASCII which is a number between 1 and 127. The second example shows that more than a single initialisation is allowed in the for loop statement.

Sample program output :

A B C D E

Sample program output :

Total = 55

The final example of a for loop demonstrates that more than a single statement may be repeatedly executed in which case they must be enclosed inside { … } brackets :

Sample program output :

3 4 5 6 7 8

3

3. The while loop

The while statement provides a mechanism for repeating C statements whilst a condition is true unlike the for loop which itereates a fixed number of times. The format of the while loop is :

while (condition)

program statement;

Somewhere in the body of the while loop, a statement must alter the value of the condition to allow the loop to finish. The example below shows how a while loop can iterate a fixed number of times. Obviously, this code could equally well be implemented using a for loop.

Sample program output :

0 1 2 3 4 5 6 7 8 9 10

Thus the program repeats the statements :

whilst the variable loop is less than or equal to 10.

The following points should be noted about using the while loop :

· The variable on which the while is dependant (the variable loop in this case) must be initialized prior to the while statement.

· The value of the variable loop must be altered within the loop so that eventually the conditional test will succeed (hopefully!) and the while loop will terminate.

· It is possible for a while loop not to be entered at all if the test fails immediately. (Contrast this with the do…while loop described below.) Thus in the following program, the loop is not entered :

4. The do… while loop
The do…while loop allows a loop to continue whilst a condition evaluates as TRUE. The do…while loop executes at least once in contrast to the while loop. The format of the do…while loop is :

do

program statement;

while (condition);

The following program uses a do…while loop to reverse an integer (for example reversing 43 becomes 34).

Sample program output :

Enter the number to be reversed : 125

521

We should note the following points about this program :

· The test at the end of the loop (value!=0) evaluates as TRUE if the variable value is not equal to zero.

· As mentioned above, the loop is entered at least once. Thus the loop can be entered with invalid data. Thus if the value entered is negative the program will fail.

· The previous point indicates that beginner programmers should not use the do…while loop as it produces a lack of control in the program. Let’s rewrite the above program and check for a negative input value. Also let’s replace the do…while loop with a while loop :

Sample program output :

Enter the number to be reversed : -125

The number must be positive!

Enter the number to be reversed : 125

521

The above program is a bit longer and more sophisticated than the others we have written. It consists of 2 while loops. The first does data input validation which checks for a positive input value. This is quite typical C programming and something you will use a lot of. The second while loop is only entered for a non-zero positive input value.

5. Selection – the if, if… else and switch clauses

The if statement allows branching (decision making) depending on the value of some conditional (Boolean) statement which evaluates to TRUE or FALSE. The following program inputs a number and prints out a message if the number is less than 100 :

The expression (value<100) is a Boolean expression and has a value of TRUE or FALSE. Thus if the expression evaluates to TRUE, then the message is printed. As in the case of for and while loops, multiple program statements can be included under a single if by enclosing them in {…} :

We can have a series of sequential if statements to apply multiple conditions. The following program determines whether a character entered from the keyboard is within the range A-Z :

Sample program output :

Enter a character: T

The character is within the range A to Z

One small point to note about the above program is that the space in front of the %c in the scanf() statement allows leading whitespace characters (spaces and TABS) to be ignored.

The if… else clause

The general form of if… else is :

if (condition 1)

statement 1;

else if (condition 2)

statement 2;

else if (condition 3)

statement 3;

.

else

statement n;

Thus if conditions 1..n-1 evaluate as FALSE and condition n evaluates as TRUE then statement n is executed. The following program uses an if else clause to check if a number inputted from the keyboard is in the range 1..10 :

A better implementation of the above program would be to embed the if… else clauses in a while loop so that the number is repeatedly input until it is in the required range. See the exercises.

The switch clause
The switch clause is a better way of writing a program when a series of if else clauses occurs. The general form of the switch clause is :

switch (expression)

{

case value1:

program statement;

program statement;

.

.

break;

case value 2:

program statement;

program statement;

.

.

break;

.

.

default

program statement;

program statement;

.

.

break;

}

The keyword break must be included at the end of each case statement. This causes control to jump outside of the switch clause once one of the cases has been met. The default clause is optional and is executed if all of the cases are not met.

The following example program performs a specific arithmetic operation on two numbers within a switch clause :

Clearly this program could be implemented with a series of if else clauses but using switch produces much neater code.

6. Logical and relational operators

These operators evaluate to Boolean (TRUE or FALSE) values and are used in if statements or for the stopping condition in while loops. We have already seen the use of relational operators in for loops. The symbols are as follows :

	Logical operator
	C programming symbol

	AND
	&&

	OR
	||

	NOT
	!

	Exlusive-OR
	^

	Relational operator
	C programming symbol

	equal to
	==

	not equal to
	!=

	less than
	<

	less than or equal to
	<=

	greater than
	>

	greater than or equal to
	>=

The following example program uses an if statement with a logical OR to validate the users input to be in the range 1-10 :

Comparing this program with the previous example shows that it eliminates one of the else clauses.

A second example validates a character to be within a certain range using a logical AND operator :

In this case the AND is used because we want validity between a range. In the previous case, we used an OR statement to test to see if a value was outside a range. Some thought should convince you that one condition is the exact negation of the other condition, a fact easily proved using simple Boolean logic.

The final example repeatedly inputs a value until it either equals 5 or 10. This program combines a relational operator with a logical operator :

This example uses the Boolean expression ((value==5)||(value==10)) which evaluates to TRUE if the variable value is equal to 5 or 10. Now in C, if a Boolean expression evaluates to TRUE, it is given a value of 1. This value is then assigned to the variable valid. If the Boolean expression evaluates to FALSE, it is given a value of 0. Obviously, the use of a Boolean expression could be replaced by a simple if else clause which directly set the variable valid, but the implementation given above is much neater.

 7. Conditional expressions

The general form of the conditional expression is :

condition? expression1 : expression 2;

The equivalent if else clause is :

if condition

expression1;

else

expression2

An example of the conditional expression is :

This expression says that if x is less than zero, the variable s becomes –1. If x is greater or equal to zero, s becomes x*x.

Below is an example program which uses two nested conditional expressions to determine whether an inputted variable is positive, negative or zero.

Sample program output :

Enter a number: -5

negative

Exercises

1. Write a C program which uses a for loop to sum all integers between 10 and 100 and print out the total.

2. Write a C program which uses two nested for loops to produce the following output :

1

22

333

4444

55555

3. Use a while loop to repeatedly input a value and print out it’s square root. Once a negative value is input, the loop terminates.

4. Write a program to enter 5 students’ marks (percentages between 0 and 100). The program must calculate the average mark and the number of students who have failed (whose mark is below 40%). You will need to combine both an if statement with for/while loops.

5. Use an if else clause embedded in a while loop to repeatedly input an integer until it lies within the range 1..10.

6. Use a switch clause to determine if an inputted character is a lower-case vowel (a,e,i,o or u).

7. Write a program which repeatedly inputs a value until that value is in the range (-20 .. -10) or (10 .. 20).

EEM1E1. Introduction to Computing Systems and C Programming

#include <stdio.h>

int main(void)

{

int count;

for (count=1; count<=10; count++)

printf(“%d ”,count);

	printf(“\n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

char letter;

for (letter=’A’; letter <= ‘E’; letter++)

printf(“%c ”, letter);

	printf(“\n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

int total, loop;

for (total = 0, loop = 1; loop<=10; loop++)

	total=total+loop;

printf(“%d Total = \n”,total);

return 0;

}

#include <stdio.h>

int main(void)

{

	int x,y,z;

	x=2;

	y=3;

	z=3;

for (x=1; x<=6; x++)

{

	printf(“%d”, y);

	y++;

}

printf(“\n%d”, z);

return 0;

}

#include <stdio.h>

int main(void)

{

int loop=0;

	while(loop <= 10)

	{

		printf(“%d”, loop)

		loop++;

	}

	printf(“\n”);

return 0;

}

printf(“%d”, loop)

loop++;

#include <stdio.h>

int main(void)

{

int loop=20;

	while(loop <= 10)

	{

		printf(“%d”, loop)

		loop++;

	}

	printf(“\n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

int value, r_digit;

printf(“Enter the number to be reversed : ”);

scanf(“%d”, &value);

do

{

	r_digit=value%10;

	value=value/10;

	printf(“%d”,r_digit);

} while(value!=0);

	printf(“\n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

int value, r_digit;

value=0;

while (value <=0)

{

printf(“Enter the number to be reversed : ”);

scanf(“%d”, &value);

if (value <= 0)

	printf(“The number must be positive!\n”);

	}

while (value != 0)

{

	r_digit=value%10;

	value=value/10;

	printf(“%d”,r_digit);

}

	printf(“\n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

int value;

printf(“Enter a number: ”);

scanf(“%d”, &value);

	

	if (value<100)

		printf(“The number was less than 100\n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

int value;

printf(“Enter a number: ”);

scanf(“%d”, &value);

	

	if (value<100)

	{

		printf(“The number was less than 100\n”);

		value++;

	}

	return 0;

}

#include <stdio.h>

int main(void)

{

char letter;

printf(“Enter a character: ”);

scanf(“ %c”, &letter);

	

	if (letter >= ‘A’)

		if (letter<=’Z’)

			printf(“The character is within the range A to Z\n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

int value;

printf(“Enter a number: ”);

scanf(“%d”, &value);

	

	if (value<1)

		printf(“The number is below 1 \n”);

else if (value>10)

	printf(“The number is above 10 \n”);

else

		printf(“The number is in the range 1..10 \n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

int menu, number1, number2, result;

printf(“Enter two numbers: ”);

scanf(“%d %d”, &number1,&number2);

printf(“Enter operator choice \n);

printf(“1=addition\n”);

printf(“2=subtraction \n”);

	printf(“3=multiplication\n”);

	scanf(“%d”,&menu);

	switch (menu)

	{

		case 1: result=number1+number2;

			break;

		case 2: result=number1-number2;

			break;

		case 3: result=number1*number2;

			break;

		default: printf(“Invalid operator \n”);

			break;

	}

	return 0;

}

	

}

#include <stdio.h>

int main(void)

{

int value;

printf(“Enter a number between 1 and 10: ”);

scanf(“%d”, &value);

	

	if ((value<1)||(value>10))

		printf(“The number is outside the range 1-10 \n”);

	else

		printf(“The number is in the range 1-10 \n”);

	return 0;

}

#include <stdio.h>

int main(void)

{

char ch;

printf(“Enter a character A-Z: ”);

scanf(“ %c”, &ch);

	

	if ((ch>=’A’)&&(ch<=’Z’))

		printf(“The character is in the range A-Z\n”);

	else

printf(“The character outside the range A-Z\n”);

	return 0;

}

s=(x<0) ? –1 : x*x;

#include <stdio.h>

int main(void)

{

int n;

printf(“Enter a number: ”);

scanf(“%d”, &n);

	

	(n<0) ? printf(“negative \n”) : ((n>0) ? printf(“positive \n) : printf(“zero \n”));

	return 0;

}

#include <stdio.h>

int main(void)

{

int value;

int valid=0;

while (valid==0)

{

 	printf(“Enter a number: ”);

scanf(“%d”, &value);

	

		valid=((value==5)||(value==10));

	}

	return 0;

}

