EEM1E1 Lecture 5

Lecture 5. Arrays

In this lecture we will cover :

· Introduction to data abstraction and modelling

· Introduction to arrays

· Declaring arrays

· Initializing arrays

· Multi-dimensional arrays

· Character arrays – strings

1. Introduction to data structures and modeling

We have seen so far in C that the variables in our programs are of the basic built in types int, float, char and double. We often want to build more sophisticated data structures out of these built in types. For example, suppose we are constructing a database of employees in our company. Each employee will be identified by his/her personal details. These personal details will be built up of a mixture of numeric and alpha numeric data. The table below gives an example of the sort of information that we might want to collect.

	Employee personal detail
	Data type

	Name
	Character string

	Date of birth
	Integer

	Address
	Character string

	NI number
	Character string

	Telephone No.
	Long integer

	Email address
	Character string

	Full/part time
	Character

	Department code
	Integer

Clearly, in constructing our database, we want to be able to handle all of the information relevant to an employee’s personal details together. For example, we want to be able to access from our database a complete personal detail record of an employee without having to read each component separately. This is where modeling is relevant. We model a personal detail record as a data structure in C which is a collection of built in types. As we will see in our advanced C programming course, we can readily build and handle our own data structures. The point is that variables of the type ‘Personal id. record’ can be handled in a similar way to the built in variable types. This concept is taken even further in C++ where, for example, the arithmetic and I/O operators can be redefined for these data structures.

Notice also that we can build data structures out of data structures. Thus, for example, we could collect together a set of personal detail data structures within a tree structure to model the management hierarchy within the company.

The rest of the sections in this lecture deal with the simplest data structure of all – the array. As we shall see, arrays allow us to create containers for data of the same type.

2. Introduction to arrays

Arrays are data structures which hold multiple variables of the same data type. They allow rapid direct access to any of the variables held. Consider the case where a programmer needs to keep track of a number of people within an organization. Each person might be identified with a simple integer id. code. An initial attempt might be to create a specific variable for each user such as :

Obviously it becomes increasingly difficult to keep track as the number of variables increases. Arrays offer a solution to this problem. An array is a multi-element box which uses an indexing system to find each variable stored within it. In C indexing starts at zero. Arrays are like other variables we have encountered in C in that they must be declared before use.

In our example above, we could use arrays as follows :

The variable ids has been declared as an array of 3 integer variables. Thus, the whole collection of person ids. can be handled through referencing a single variable name. Each individual id. within the collection can be easily and rapidly accessed.

Arrays use the square brackets [] to access each array element. Thus the syntax x[5] refers to the 6th element of an array x. Remember, the first element is x[0].

The following program gives an example of declaring and accessing an array of characters called word.

Sample program output:

The contents of word[] is Hello

Notice how the last element is filled with a zero value to signify the end of the character. In C there is no string type, so a character array is used to hold strings. This zero value tells the printf command when to stop printing characters.

3. Declaring arrays

Arrays may consist of any of the valid data types. Arrays are declared along with all other variables in the declaration section of the program. The following program declares an array of 100 integer and 200 floating point variables. Individual array elements can then be used in exactly the same way as integer and floating point variables :

4. Initializing arrays

Obviously we can assign values to array elements after we have declared the arrays. However, we can also initialize arrays (that is, give the array elements initial values at the same time as declaring the array.) This is done by enclosing a list of initial values in braces {..}.

Sample program output

The contents of word[] is Hello

values[0] is 1

values[1] is 2

.

.

values[7] is 8

Notice that inside the square bracket when the array is declared, there is no variable to indicate how big the array is to be (eg. int values[]). In this case, C initializes the array to the number of elements that appear within the braces. So, for example, values has 8 elements and word has 5 elements.

5. Multi-dimensional arrays

We can think of the arrays we have seen so far as one dimensional. In other words, array elements are accessed by a single index. Multi-dimensional arrays have two or more indices. Thus a two dimensional array requires two indices with which to access each element. Think of a two dimensional array as a grid (or matrix) of numbers arranged row and column wise :

	(0,0)
	(0,1)
	(0,2)
	(0,3)
	(0,4)

	(1,0)
	(1,1)
	(1,2)
	(1,3)
	(1,4)

	(2,0)
	(2,1)
	(2,2)
	(2,3)
	(2,4)

	(3,0)
	(3,1)
	(3,2)
	(3,3)
	(3,4)

	(4,0)
	(4,1)
	(4,2)
	(4,3)
	(4,4)

The diagram above shows a 5x5 grid with each box containing its index values. Thus element (1,2) specifies the 2nd row and 3rd column (remember row and column indices start from zero!) We can think of a two dimensional array in exactly the same way. Thus we could declare a two dimensional integer array as follows :

In this case, our array consists of 3 rows and 5 columns. We could initialize each element of multi[][] to zero as follows :

We could use the initialization braces we saw for one dimensional arrays. The key point here is to regard the two dimensional array as a one dimensional array of one dimensional arrays! For example, our array multi can be viewed as 3 5-element one dimensional arrays :

	[0,0]
	[0,1]
	[0,2]
	[0,3]
	[0,4]

	[1,0]
	[1,1]
	[1,2]
	[1,3]
	[1,4]

	[2,0]
	[2,1]
	[2,2]
	[2,3]
	[2,4]

This is actually stored in memory in row by row order:

	[0,0]
	[0,1]
	[0,2]
	[0,3]
	[0,4]
	[1,0]
	[1,1]
	[1,2]
	[1,3]
	[1,4]
	[2,0]
	[2,1]
	[2,2]
	[2,3]
	[2,4]

Thus we can initialize our array multi[][] (to random integers) in the order that it’s elements are stored in memory as follows:

We will see when we look at pointers in the advanced C programming course that we can exploit this arrangement of two dimensional arrays even further for efficient array access. Note that the number of rows in the array can be omitted as the compiler works this out from the number of initializing values.

6. Character arrays – strings

The manipulation of strings in an application program is very important. Strings can represent non-numeric data such as names and addresses. C has no built in string type (unlike JAVA for example). However, we can manipulate strings as arrays of characters. Consider the following simple program :

Sample program output

The word is Hellohrrvct433

The name is John Smith

The above program shows two ways in which a string can be created. For the string word[], an array of characters are produced. In the case of name[], a direct initialization with a text string is used. As can be seen, in the first case, garbage is printed out after the characters in word[]. This is because when creating a string this way, a termination null character (or zero) must be added. For the direct initialization, the compiler inserts this null character automatically. In both cases, the compiler creates a character array of the required number of elements (taking into account the null character).

We can thus modify out program as follows :

Sample program output

The word is Hello

The name is John Smith

Now the first string is printed correctly.

We can manipulate the string by accessing individual array elements. For example, the following program reverses the name[] string :

Sample program output

htimS nhoJ

string.h
The header file string.h contains a whole list of C functions which enable the manipulation of strings. We won’t go through the whole list here but two simple functions are strlen() and strcpy(). The first function returns the length of a string and the second function allows one string to be copied into another. The following program shows how these functions work :

Sample program output

The length of name is 10

The length of new_name is 10

In this program, strlen(string) returns the length of the string. strcpy(string1,string2) copies the contents of string2 into string1. Notice also that in our case, the string new_name is is declared as an array of 20 chars. The user of the function strcpy() is responsible for creating sufficient memory for the output string.

Inputting strings

As we have seen, the %s modifier is used by printf() to print strings to the keyboard. It is also used by scanf() to input strings. Again the null character is automatically appended to the input string. Thus, the following program inputs a string from the keyboard :

Sample program output

Enter a string: Hello

The string entered was Hello
Note that, in scanf(), we don’t need to precede the variable name string with &. We will see why in more detail when we look at pointers, suffice to say at the moment that it is because string is an array.

Exercises

1. Write a program which declares a 100 element integer array and initializes array element i to i. The program then computes and prints out the average value of all of the array elements

2. Write a program which declares a 10x10 two dimensional array and initializes its elements to the sum of the row and column indices. The program should also compute and print out the element totals.

3. Write a C program which merges two strings, “Hello” and “World!” into a single string “Hello World!”.

int id1 = 101;

int id2 = 253;

int id3 = 516;

int ids[3];

int ids[0] = 101;

int ids[1] = 253;

int ids[2] = 516;

include <stdio.h>

int main(void)

{

	char word[20];

	word[0]=’H’;

	word[1]=’e’;

	word[2]=’l’;

	word[3]=’l’;

	word[4]=’o’;

	printf(“The contents of word[] is %s \n”,word);

	return 0;

}

include <stdio.h>

int main(void)

{

	int numbers[100];

	float averages[200];

	float sum;

	numbers[10]=5;

	numbers[10]++;

	averages[5]=2.3;

	sum=averages[5]+numbers[10];

	return 0;

}

include <stdio.h>

int main(void)

{

	char word[] = {’H’,’e’,’l’,’l’,’o’};

	int values[]={1,2,3,4,5,6,7,8};

	

	printf(“The contents of word[] is %s /n”,word);

	for (x=0; x<8; x++)

		printf(“values [%d] is %d \n”, x, values[x]);

	return 0;

}

EEM1E1. Introduction to Computing Systems and C Programming

int multi[3][5];

int main(void)

{

	int row,col;

int multi[3][5];

for (row=0; row<3; row++)

	for (col=0; col<5; col++)

		multi[row][col]=0;

return 0;

}

	

int main(void)

{

	int multi[][5]={{3,1,6,5,3},

 {7,2,5,7,1},

 {8,3,2,6,2}};

return 0;

}

	

include <stdio.h>

int main(void)

{

	char word[] = {’H’,’e’,’l’,’l’,’o’};

	char name[]=“John Smith”;

	printf(“The word is %s \n”,word);

	printf(“The name is %s \n”,name);

	return 0;

}

include <stdio.h>

int main(void)

{

	char word[] = {’H’,’e’,’l’,’l’,’o’,’\0’};	 /* null character added */

	char name[]=“John Smith”;

	printf(“The word is %s \n”,word);

	printf(“The name is %s \n”,name);

	return 0;

}

include <stdio.h>

int main(void)

{

	int i;

	char name[]=“John Smith”;

	for (i=9; i>=0; i--)	

		printf(“%c”,name[i]);

	return 0;

}

	

include <stdio.h>

include <string.h>

int main(void)

{

	char name[]=“John Smith”;

	char new_name[20];

	printf(“The length of name is %d \n”, strlen(name));

	strcpy(new_name,name);

	printf(“The length of new_name is %d \n”,strlen(new_name));

	return 0;

}

include <stdio.h>

int main(void)

{

	char string[20];

	printf(“Enter a string: ”);

	scanf(“%s”,string);

	printf(“The string entered was %s \n”,string);

	return 0;

	

}

