EEM1E2 Lecture 3

Lecture 3. Structures

In this lecture we will cover :

· Structures – the basics
· Structure initialization and assignment
· Accessing structure members
· Pointers to structures
· Structures as function arguments and return values
· Arrays of structures
· Unions
1. Structures – the basics

We have seen that we can group similar items together using arrays. However, at times we need to group related data items of different type. For example, it we are creating a database of employees who work for a company, we may wish to group together the following items :

· char name[20]
· int age
· int salary
· char address[100]
· float height
· float weight
We can do this in C using a structure. Structures allow a fixed number of data items, possibly of different types, to be treated as a single object. Variables of any particular structure can be declared and used in a similar way as simple built in types. Also, the individual components or fields of the structure can be accessed.

 For the example above, a structure called person can be created as follows :

We can then created variables of the type struct person as follows :

This creates two struct person variables, p1 and p2.

We can also combine the variable declaration with the struct statement as follows :

This also creates two struct person variables, p1 and p2.

In order to avoid having to keep including the keyword struct into the declaration of variables, we can use a typedef statement as follows :

2. Structure initialisation and assignment
A variable of a particular structure type can be initialized by following its definition with an initializer for the corresponding structure type. The example below initializes a date structure, comprising 3 integers :

This initializes the day, month, and year field to 29, 11 and 2000 respectively.

If there are fewer initializers than there are fields, the remaining fields are set to zero. It is a compilation error to provide more initializers than fields of a structure.

A structure variable may be assigned to another structure variable in a straightforward manner :

In this example, all of the fields of old_date are copied into new_date.

3. Accessing structure members
A special operator, the dot operator is provided to access individual members of a structure variable. Thus, in our previous examples, we can access individual fields as follows :

We can use the results of accessing each field just as if they were normal built in variables :

In this example, d.day and d.month are integer variables.

4. Pointers to structures

We can set up a pointer to a structure in a similar way to any of the built in data types. Thus the following code creates a date variable and a pointer to a date variable and points one at the other. The use of the indirection operator and address-of operator & are exactly as for built in data types.

We can use the dot operator to access fields of the structure through the pointer as before but, of course, we must apply the indirection operator to the pointer to access the structure variable itself :

In order to avoid the use of the indirection operator, an arrow operator -> is provided which enables accessing structure fields through a pointer :

This is always used in preference to using the dot operator and the indirection operator.

The following example program creates a complex number structure and accesses its elements using both the dot and arrow operators combined with the appropriate indirection or address-of operators.

A common pitfall when using pointers is to try and access a structure variable before memory for that variable has been allocated :

When pointer pc is declared, it is just like any other pointer and points into empty space. Thus, attempting to access the fields of struct complex through the pointer will cause a program crash.

There are two ways around this. The first is to pre-initialise the pointer to point to an existing structure variable as was done in the previous example program. The second, more usual way, is to use the dynamic memory allocation functions calloc() or malloc() to allocate appropriate memory for the variable. This is done in the following example.

Note the use of the sizeof() operator which returns the number of bytes required for the complex number variable.

5. Structures as function arguments and return values

Structures may be passed as function arguments and returned as function values. As a first simple example, the program below uses a function display_date(date d) to write the date passed to it in a suitable format :

In this case, the argument to display_date() is passed by value. However, this means that a full copy of the variable is made each time the function is called. In this example, this is not too serious since the structure date only consists of 3 integers. However, for a big structure, possibly consisting of 100’s or 1000’s of bytes, this is a major computational overhead. Hence, it is normal to pass a structure argument by reference. This is shown in the example below. Note that, if our intention is not to update the value of the argument in the function, a constant pointer is passed.

In this example program, any attempt to update the date variable through the pointer argument will result in an error because of the const keyword. Thus within the function display_date(), the statement :

will cause a compilation error to be flagged.

If the intention is to update the structure within the function, again a pointer to the structure is passed to the function and the const keyword is left out. In the following example, the function conjugate() computes the complex conjugate of the complex number argument to the function.

Sample program output

real = 2.0, imaginary = 3.0

conjugate: real = 2.0, imaginary = -3.0

Structures may also be returned as function values. As another example, suppose we have structures rectangular and polar which maintain the value of the co-ordinates in the (x,y)-plane in rectangular and polar co-ordinates respectively. We can then define a function convert() which takes a rectangular co-ordinate and returns the equivalent polar co-ordinate. The code for all of this is as follows.

Instead of returning a structure, the function convert() can also return a pointer to a structure. This will usually be more efficient since only a single pointer is copied back out of the function (typically 4 bytes) instead of the whole structure which could be very large. In this case, convert() would be written as follows.

The main difference, apart from the use of the arrow instead of the dot operator, is that memory for the struct polar variable that the output pointer points to, has to be dynamically allocated inside the function.

The function is used as follows :

It may be tempting to write the preceding function as follows.

This would not work and any attempt to access the data pointed to by the return pointer would cause the program to crash. This is because a pointer to an automatic variable is returned and the memory for that variable is deleted once the function returns.

6. Arrays of structures

Arrays of structures are commonly used when a large number of similar data structures are required to be processed together. For example, if a company wanted to keep track on the personal information about all of its 1000 employees then an array of person structures can be created as follows :

This declares the variable person_array to be an array of person structures.

We can use the typedef statement to create a type which is an array of structures. For example, the following code generates a type complex_array as an array of complex structures using typedef.

It is important to realize that now complex_array is a type and not a variable as was the case for person_array. Using typedef in this way is really just a means of shortening declaration statements. Without the typedef statement, variables ca1,ca2,ca3 would be declared as :

Arrays of structures can be initialized in a manner similar to the initialization of multi-dimensional arrays. For example, we can initialize arrays of type complex_array as follows.

In this case, variable ca has been initialized to a 3-element array where
[image: image1.wmf]j

ca

2

1

]

0

[

+

=

,
[image: image2.wmf]j

ca

-

=

3

]

1

[

 and
[image: image3.wmf]j

ca

5

2

]

2

[

+

=

. Note that, in the typedef statement, the type complex_array has now been left undimensioned so that arrays of complex numbers of varying sizes can be created through the initialization statement.

Also, from this example, it can be seen that particular member variables inside the structure array can be accessed in a obvious way using the [] and . operators.

Finally, pointers can also be used to access structure elements and member variables. Thus, we can set up a pointer to point to variables of type complex_array as follows.

The pointer c_p is incremented to access successive elements of the array just as if it were an array of built in types.

7. unions

A union is a construct that allows different types of data items to share the same block of memory. The compiler automatically allocates sufficient space to hold the largest data item in the union. However, it is the programmer’s responsibility to keep track of what currently is stored in the union.

Defining and accessing a union is similar to that of a structure except that the keyword union is used instead of struct. In the following example, a union data_types is used to represent different types of data.

The key thing to realize is that the union type data_types can only, at any one time, represent one of the 3 fields comprising the union. Thus, at most the compiler needs to set aside 20 bytes of memory for the character array. It data_types were a structure, then 20+8+4 bytes would be required to represent the character array, the double precision and the integer types respectively.

Variables can be created and initialized just like as for structures.

Thus, as can be seen, only a single initializer is required since the union only stores a single data item.

It is incorrect to store something as one type and then extract it as another. Thus the following statements will produce anomalous results.

It is quite usual to include a tag variable to keep track on what is currently stored in the union. Thus the following program uses an integer variable dtype as a tag variable.

Exercises

1. Define a structure that represents the time in hours, minutes and seconds. Write a function advance_time() which takes a time variable and a number of seconds as arguments and updates the variable by the required number of seconds.

2. Create a structure Matrix which is able to represent a matrix of floating point numbers and can be of any dimension. Write functions allocate_matrix(), which dynamically allocates the memory for the data and multiply_matrices() which multiplies two matrices together. Think about the argument and return types of these functions.

3. A geometric shape object can either be a line represented by its end-point (x,y) co-ordinates, a triangle represented by the co-ordinates of its 3 vertices or a quadrilateral represented by its 4 vertices. Define a union geometric_shape() which can represent any of the 3 shapes. Write a function perimeter() which calculates the perimeter of any shape given the geometric_shape() object as an argument along with a tag.

EEM1E2. Advanced C Programming and Algorithmic Problem Solving

struct person

{

char name[20];

int age;

int salary;

char address[20];

float height;

float weight;

};

struct person p1,p2;

struct person

{

char name[20];

int nyears;

int salary;

char address[20];

float height;

float weight;

} p1,p2;

typedef struct

{

char name[20];

int nyears;

int salary;

char address[100];

float height;

float weight;

} person;

person p1,p2;

struct date

{

	int day,month,year;

} today={29,11,2000};

struct date old_date={1,5,1987};

struct date new_date;

new_date=old_date;

struct person p;

p.name=”John Smith”;

p.age=31;

p.salary=20000;

.

.

struct date d;

d.day=3;

d.month=9;

d.year=2000;

struct date d;

.

.

if ((d.day==25)&&(d.month==12))

	printf(“Merry Christmas!”);

struct date today = {1,12,2000};

struct date* p_date;

p_date=&today;

*(p_date).day=2;

*(p_date).month=5;

*(p_date).year=2001;

p_date->day=2;

p_date->month=5;

p_date->year=2001;

#include <stdio.h>

struct complex

{

	float real;

	float imag;

} x;

int main(void)

{

	struct complex *pc=&x;

	x.real=15.0;

	x.imag=20.0;

	printf("real = %f, imaginary = %f \n",pc->real,pc->imag);

	(&x)->real=20.0;

	(&x)->imag=25.0;

	printf("real = %f, imaginary = %f \n", (*pc).real, (*pc).imag);

	return 0;

}

int main(void)

{

	struct complex* pc;

	/* crash!! */

	pc->real=20;

	pc->imag=25;

}

#include <stdio.h>

struct complex

{

	float real;

	float imag;

};

int main(void)

{

	struct complex *pc;

	pc=(struct complex*) malloc(sizeof(struct complex));

	pc->real=20;

	pc->imag=25;

	printf("real = %f, imaginary = %f \n", pc->real, pc->imag);

	return 0;

}

struct date

{

	int day,month,year;

};

void display_date(struct date d)

{

	printf("The date is %d/%d/%d \n",d.day,d.month,d.year);

}

int main(void)

{

	struct date today = {1,4,2000};

	display_date(today);

	return 0;

}

struct date

{

	int day,month,year;

};

void display_date(const struct date* pd)

{

	printf("The date is %d/%d/%d \n",pd->day,pd->month,pd->year);

}

int main(void)

{

	struct date today = {1,4,2000};

	display_date(&today);

	return 0;

}

(*pd).day=15;

#include <stdio.h>

struct complex

{

	float real;

	float imag;

};

void conjugate(struct complex* pc)

{

	pc->imag=-pc->imag;

}

int main(void)

{

	struct complex z = {2.0,3.0};

	printf("real = %f, imaginary = %f \n", z.real, z.imag);

	conjugate(&z);

printf("conjugate: real = %f, imaginary = %f \n", z.real, z.imag);

	return 0;

}

#include<math.h>

struct rectangular

{

	float x,y;

};

struct polar

{

	float r,theta;

};

struct polar convert(const struct rectangular* rec)

{

	struct polar pol;

	if (rec->x == 0 && rec->y == 0)	/* origin */

		pol.r=pol.theta=0;

	else

	{

		pol.r = sqrt(rec->x*rec->x+rec->y*rec->y);

		pol.theta=atan2(rec->y,rec->x);

	}

	return pol;

	

}

int main(void)

{

	struct rectangular r = {1,2};

	struct polar p = convert(&r);	/* converts r to polar co-ords */

	printf(“polar r, theta %f %f \n”, p.r,p.theta);

	return 0;

}

struct polar* convert(const struct rectangular* rec)

{

	struct polar* p_pol;

	p_pol = (struct polar*)malloc(sizeof(struct polar));

	if (p_pol)

	{

		if (rec->x == 0 && rec->y == 0)	/* origin */

			p_pol->r=p_pol->theta=0;

		else

		{

			pol->r = sqrt(rec->x*rec->x+rec->y*rec->y);

			pol->theta=atan2(rec->y,rec->x);

		}

	}

	return p_pol;

	

}

int main(void)

{

	struct rectangular r = {1,2};

	struct polar* pp = convert(&r);	/* converts r to polar co-ords */

	printf(“polar r, theta %f %f \n”, pp->r,pp->theta);

	return 0;

}

struct polar* convert(const struct rectangular* rec)

{

	struct polar pol;

	

	if (rec.x == 0 && rec.y == 0)	/* origin */

		pol.r=pol.theta=0;

	else

	{

		pol.r = sqrt(rec->x*rec->x+rec->y*rec->y);

		pol.theta=atan2(rec->y,rec->x);

	}

	

	return &pol;

	

}

struct person person_array[1000];

struct complex

{

	float real;

	float imag;

};

typedef struct complex complex_array[10];

int main(void)

{

	complex_array ca1,ca2,ca3;

	.

	.

}

struct complex ca1[10],ca2[10],ca3[10];

struct complex

{

	float real;

	float imag;

};

typedef struct complex complex_array[];

int main(void)

{

	complex_array ca = {{1.0,2.0}, {3.0,-1.0},{2.0,5.0}};

	

	ca[0].real=3;

	ca[0].imag=-2;

	return 0;

}

struct complex

{

	float real;

	float imag;

};

typedef struct complex complex_array[];

int main(void)

{

	complex_array ca = {{1.0,2.0}, {3.0,-1.0},{2.0,5.0}};

	struct complex* c_p =ca;

	int i;

	for (i=0;i<3; i++)

	{

		c_p->real=3;

		c_p->imag=-2;

		c_p++;

}

	return 0;

}

union data_types

{

	double d;

	char c[20];

	int i;

};

int main(void)

{

	union data_types data1={3};

	union data_types data2={“hello world”};

	union data_types data3={5.3};

	return 0;

}

	data1.i=3;

	printf(“%s”,data1.c);

#define DOUBLE 1

#define INT 2

#define CA 3

int main(void)

{

	int dtype;

	union data_types data;

	data.i=5;

	dtype=INT;

	switch (dtype)

	{

		case DOUBLE;

			printf(“%f”,data.d);

		case INT;

			printf(“%d”,data.i);

		case CA;

			printf(“%s”,data.c);

	return 0;

}

_1037431296.unknown

_1037431304.unknown

_1037431289.unknown

