EEM1E2 Lecture 4

Lecture 4. Files

In this lecture we will cover :

· Files – the basics

· Using files – the FILE data structure

· Character file i/o – getc() and putc()
· String file i/o - fgets() and fputs()
· Formatted file i/o - fprintf() and fscanf()
· Binary file i/o – fread() and fwrite()
· Error handling – feof() and ferror()
1. Files – the basics

We have already seen lots of examples of inputting and outputting data. The assumption thus far has been that data is inputted from a keyboard and outputted to a monitor. This is usually adequate if the volume of data to be inputted or outputted is not too great. However, in a great many applications, huge volumes of data need to be handled. For example, programs that produce gas or electricity bills need to read mega-bytes of information about user accounts in order to produce and print the bills. All of this information is stored on a file. A file is just a place where information is stored and can be accessed by a computer. In C, we have seen that the standard i/o library has functions scanf() and printf() for inputting and outputting information. It also has a number of functions, many of which we will look at in this lecture, for accessing information from files.

It should be noted here that in the above paragraph, a distinction is implied between inputting and outputting from keyboard/monitor and inputting/outputting from/to file. In C there is no such distinction. Instead there is the concept of an i/o stream which for example, can be a sequence of characters. The stream is associated with either a device (such as a monitor or a keyboard) or a file. When a C program started, 3 text streams are opened automatically. They are the standard input for reading input, standard output for writing output and standard error for writing diagnostic output. Normally the standard input stream is associated with the keyboard device and the standard output and error streams are associated with the monitor device. However, they can easily be re-associated with a file.
When talking about files, a distinction is made between a text file and a binary file. A text file is a stream of characters so that the binary representation of the data in the file is the ASCII representation of each character. On the other hand, a binary file is just a stream of bytes with each byte having no special significance as a character and is identical to the internal representation of the data Thus, if an integer value of 100000 is stored in a text file, this would take 6 bytes corresponding to the 6 digits, each represented in ASCII. This is ideal if the stream is attached to a line printer since line printers understand ASCII and can print the individual characters. However, as a binary file, it would only require 4 bytes (if it was stored as an int variable) but now could not be processed by a device, such as a printer, expecting a text stream.

2. Using files – the FILE data structure

C provides a data structure called FILE which enables a whole range of file manipulation operations to be carried out. This data structure is defined in the stdio.h header file.

In order to use files, the following steps must be taken.

· Declare a variable of type FILE
To use files in C, a file variable must be declared. This variable must a pointer to a FILE type, Thus the program statement below declares a variable in_file through which we can carry out file manipulation operations :

· Associate the variable with a file using fopen()
The FILE pointer variable is associated with a specific file using the fopen() function which accepts a filename for the file and the access mode (such as reading or writing). The program statement below opens a file called my_file.dat for read access and attaches the file pointer variable in_file to it :

The following access permissions are available :

· “r” – Opens an existing text file for reading starting at the beginning of the file.

· “w” – Create a new text file, or truncate an existing one, for writing.

· “a” – Create a new text file for writing, or write at the end of an existing one.

A “b” may also be used in combination with these access modes (eg. “rb”, “wb”, “ab”) which indicates that a binary file is to be opened.

Note that fopen() returns a NULL if the file open operation fails. For example, this could happen if the file doesn’t exist and the file has been opened for reading.

· Process the data in the file

Appropriate file processing routines are used to manipulate the file data using functions defined in the stdio.h header file. All of these functions use the FILE pointer handle returned by fopen() in order to access the file.

· When finished, close the file
The fclose() function closes the file.

The following example program inputs a file name and opens the file. If the file open fails, a message is printed :

Quite often, the code to open a file and test if the opening was successful is given in a single statement :

3. Character file i/o – getc() and putc()
Single characters may be read from files using the function getc(). This function is used as follows :

In this example, in_file is a file handle returned by fopen(). getc() reads as unsigned char a character from the file and returns it in an integer variable. It also returns the value EOF when an end of file is encountered. It is common to place calls to getc() in a while loop :

Single characters may be written to files using the function putc(). This function is used as follows :

putc() returns the character output as an integer variable.

Note that C also provides functions getchar() and putchar() which read from the standard input and write to the standard output respectively. Hence no file handle is required in the arguments to these functions.

In the example program shown below, one file is copied to another file character by character using getc() and putc(). A count is made of the number of characters copied.

4. String file i/o - fgets() and fputs()
The function fgets() reads a string of characters from a file into a character array until a newline character is read, an end of file is reached, or a specified number of characters have been read. The function is used as follows :

In this example, a maximum of n-1 characters are read from the file and placed in the string buffer. If n-1 characters are read, then a terminating null character is placed at the end of buffer. Alternatively, if an end of line is read, a terminating newline character is placed as the last character in buffer after the line of text is read. Finally, if an end of file character is read, then the EOF character is the last character to be placed in buffer. fgets() returns the character array buffer. It is the responsibility of the programmer using this function to ensure that there are enough elements in the character array to accommodate the largest line of text read from the file.

The function fputs() writes a string of characters into a file. The function is used as follows :

The terminating null character of the string is not output to the file. It returns an non-negative integer if the string was output successfully. Otherwise, an end of file character is returned.

The following program uses the functions fgets() and fputs() to copy a file line by line. It prints out the number of lines copied.

5. Formatted file i/o - fprintf() and fscanf()
These functions work in a similar way to printf() and scanf() except that they output/input to and from files and not the standard output and input. They allow file input/output of information is that is formatted into the different C built-in data types to be carried out. The same modifiers (%f, %d etc) are used as for printf() and scanf().

The first example program outputs a set of lines to a file with each line comprising a string and an integer.

The ith output file line of the output file is then just Line i. Obviously, exactly the same result could have been obtained by outputting to the standard output with printf() and re-directing the standard output to a text file.

We use fscanf() in an exactly similar way to scanf(). Thus the example program below shows how to read the file created in the previous example.

This program uses the fact that fscanf() returns either the number of separate items read during (in this case there will be 2 items corresponding to the string and the integer) or an end of file symbol. Again, the same effect could be achieved by using scanf() and redirecting the standard input to a text file.

6. Binary file i/o – fread() and fwrite()
All of the file i/ functions introduced thus far have been for text files. The functions fread() and fwrite() are for reading and writing blocks of data to a binary file.

Function fread() is used as follows :

In this example a block of n integers are read from the file into the array buffer[]. The sizeof() function returns the size (in bytes) of each individual data items to be read. Normally, sizeof(int) returns 4. However, including the sizeof() function in the fread() call instead of just the value 4 makes the program more portable. fread() returns the number of items read from the file. Obviously, the total number of bytes read equals the product of n and sizeof(int) if the read operation is successfully performed.

Function fwrite() is used as follows :

In this example, a block of n integers stored in the array buffer[] is written to the file. The function returns the number of data items written to the file that will be n if the write is successfully performed.

The first example program below shows a block of 500 integers written to a file with fwrite() and read back using fread().

The second example program shows that an array of structures can be inputted/outputted from/to a file using fread() and fwrite(). In this example program, details about a person are stored in a structure person_id. An array of these structures are inputted from the keyboard and written to a file using fwrite(). The information is subsequently retrieved using fread().

7. Error handling – feof() and ferror()
These error handling functions provide facilities to test whether the end of file character EOF returned by file i/o functions indicates an end of file or an error.

Function feof() returns a non-zero value if the end of file indicator is set and zero otherwise. It should be noted that a call to feof() does not reset the end of file indicator. The function ferror() returns a non-zero value if the error indicator for the file is set and returns zero otherwise. Once an error has occurred for a file, repeated calls to ferror() continue to return non-zero values until the error indication is cleared. This is done with a call to the clearerr() function or by closing the file.

These functions are used as follows :

The following program illustrates the use of these two functions in determining the cause a file read loop, using fscanf(), terminating.

Exercises

1. Write a program that reads a text file and prints out the number of characters, words and lines in the file.

2. Write a program that read a file containing a C program and writes it to another file stripping out all comments.

3. Write a program that writes the floating point values x and sin(x) to a text file using fprintf() for a suitable range of values. Repeat this process by defining an array of structures with each structure containing the floating point values x and sin(x) and write the array to a binary file using fwrite(). Compare the file sizes.

EEM1E2. Advanced C Programming and Algorithmic Problem Solving

FILE* in_file;

in_file = fopen(“my_file.dat”, “r”);

fclose(in_file);

#include <stdio.h>

int main(void)

{

	FILE* input_file;

	char filename[20];

	printf("Input a filename : ");

	scanf("%s",filename);

	input_file=fopen(filename,"r");

	if (input_file==NULL)

		printf("file open failed ");

	return 0;

}

if ((input_file=fopen(filename,"r"))==NULL)

	printf("file open failed ");

int ch;

FILE* in_file;

.

.

ch=getc(in_file);

int ch;

while ((ch = getc(in_file)) != EOF)

{

…………

}

int ch;

FILE* out_file;

.

.

putc(ch,out_file);

#include <stdio.h>

int main(void)

{

	FILE* input_file;

	FILE* output_file;

	char in_filename[20], out_filename[20];

	int c, chars_copied=0;

	

	printf("Input the input filename : ");

	scanf("%s",in_filename);

	printf("Input the output filename : ");

	scanf("%s",out_filename);

	if ((input_file=fopen(in_filename,"r"))==NULL)

		printf("input file open failed ");

	else

	{

		if ((output_file=fopen(out_filename,"w"))==NULL)

			printf("output file open failed ");

		else

		{

			while ((c=getc(input_file))!=EOF)

			{

				putc(c,output_file);

				chars_copied++;

			}

			putc(c,output_file);	 /* copy the EOF character */

		}

	 	printf("%d characters copied \n",chars_copied);

	}

	

	fclose(output_file);

	return 0;

}

char* buffer;

int n;

FILE* in_file;

.

.

fgets(buffer, n, in_file);

char* buffer;

FILE* out_file;

.

.

fputs(buffer, out_file);

#include <stdio.h>

#define MAX_LENGTH 250

int main(void)

{

	FILE *input_file *output_file;

	char in_filename[20], out_filename[20], buffer[MAX_LENGTH];

	int lines_copied=0;

	

	printf("Input the input filename : ");

	scanf("%s",in_filename);

	printf("Input the output filename : ");

	scanf("%s",out_filename);

	if ((input_file=fopen(in_filename,"r"))==NULL)

		printf("input file open failed ");

	else

	{

		if ((output_file=fopen(out_filename,"w"))==NULL)

			printf("output file open failed ");

		else

		{

			while ((fgets(buffer,MAX_LENGTH,input_file))!=NULL)

			{

				fputs(buffer,output_file);

				lines_copied++;

			}

		}

	 	printf("%d lines copied \n",lines_copied);

	}

	

	fclose(output_file);

	return 0;

}

#include <stdio.h>

int main(void)

{

	FILE* output_file;

	char output_filename[20];

	char out_string[]="Line ";

	int i;

	printf("Input the output filename : ");

	scanf("%s",output_filename);

	output_file=fopen(output_filename,"w");

	for (i=0; i<10; i++)

		fprintf(output_file,"%s %d \n",out_string,i);

	

	fclose(output_file);

	return 0;

}

#include <stdio.h>

int main(void)

{

	FILE* input_file;

	char input_filename[20];

	char in_string[20];

	int i,rval;

	printf("Input the input filename : ");

	scanf("%s",input_filename);

	input_file=fopen(input_filename,"r");

	rval=fscanf(input_file,"%s %d",in_string,&i);

	printf("%s %d \n",in_string,i);

	while (rval!=EOF)

	{

		rval=fscanf(input_file,"%s %d",in_string,&i);

		printf("%s %d \n",in_string,i);

	}

	

	return 0;

}

int nread, buffer[];

FILE* in_file;

.

.

nread=fread(buffer, sizeof(int), n, in_file);

int nread, buffer[];

FILE* out_file;

.

.

fwrite(buffer, sizeof(int), n, out_file);

#include <stdio.h>

int main(void)

{

	FILE* output_file, *input_file;

	char out_filename[20];

	int inbuf[500],outbuf[500];

	int i,nread;

	printf("Input the output filename : ");

	scanf("%s",out_filename);

	for (i=0; i<500; i++)

	 outbuf[i]=i;

	output_file=fopen(out_filename,"w");

	fwrite(outbuf, sizeof(int), 500, output_file);

	

	fclose(output_file);

	input_file=fopen(out_filename,"r");

	nread=fread(inbuf,sizeof(int),500,input_file);

	printf("\n\n%d items read \n",nread);

	return 0;

}

#include <stdio.h>

#define NUM 20

struct person_id{

	char name[20];

	int age;

	float height;

} people[NUM];

struct person_id people_out[NUM];

int main(void)

{

	FILE *output_file, *input_file;

	char output_filename[20];

	int i;

	printf("Input the output filename : ");

	scanf("%s",output_filename);

	output_file=fopen(output_filename,"wb");

	for (i=0; i<NUM; i++)

	{

		printf("Input the name : ");

		scanf("%s",people[i].name);

		printf("Input the age : ");

		scanf("%d",&people[i].age);

		printf("Input the height : ");

		scanf("%f",&people[i].height);

	}

	fwrite(people,NUM,sizeof(struct person_id),output_file);

	fclose(output_file);

	input_file=fopen(output_filename,"r");

	fread(people_out,NUM,sizeof(struct person_id),input_file);

	for (i=0; i<NUM; i++)

	{

		printf("Name %d = %s \n",i, people_out[i].name);

		printf("Age %d = %d \n",i, people_out[i].age);

		printf("Height %d = %f \n",i, people_out[i].height);

	}

	return 0;

}

FILE* input_file=fopen(….);

.

.

.

if (feof(input_file))

	printf(“end of file reached \n”);

if (ferror(input_file))

	printf(“A file i/o error has occurred \n”);

include <stdio.h>

int main(void)

{

	FILE* input_file;

	char input_filename[20], buff[100];

	printf("Input the input filename : ");

	scanf("%s",input_filename);

	if ((input_file=fopen(input_filename,"r"))==NULL)

	{

	 	printf("Can't open %s \n",input_filename);

	 	exit(-1);

	}

	while (fscanf(input_file,"%s",buff)>0)

		printf("%s \n",buff);

	/* Test to see why the loop terminated */

	if (feof(input_file))

		printf("End of file \n");

	if (ferror(input_file))

		printf("Error reading the data \n");

	return 0;

}

