EEM1E2 Lecture 6

[image: image3.wmf]0

x

Lecture 6. Dynamic data structures

In this lecture we will cover :

· Basic ideas about dynamic data structures

· Self-referential structures

· Linked lists

· Stacks and queues

· Binary trees

1. Basic ideas about dynamic data structures

The material in this lecture is an application of the advanced C programming techniques we covered in previous chapters and, in particular, the pointer and the structure. All of these data structures are based around self-referential structures whereby structures contain pointers to structures of their own type.

We have already met data structures that can be created dynamically when we looked at the array. Memory for arrays can be either created automatically if the size of the array is known in advance or dynamically if the size of the array depends on something computed at runtime. However, we also know that the array is an extremely limited data structure. Its main problem is that, once allocated, its size is fixed for the rest of its lifetime. Thus it can’t ‘grow’ dynamically even though it can be created dynamically. Also, items can’t be inserted in the array somewhere in the middle without awkward and time-consuming shuffling of the rest of the array items.

All of these limitations are overcome by the linked list data structure that is a more sophisticated data structure than the array. Linked lists can be grown or shrunk dynamically as items are inserted and deleted from the list. The linked list can be though of as a linear list of items. If the items need to be organized hierarchically in some way, a tree structure can be used. For example, this might be the natural way to organize a family tree where each item represents information about a particular member of the family. Trees, again, are dynamic data structures where items can be added or removed easily.

Useful applications of the linked list are queues and stacks. Stacks are routinely used where there is a need to store temporary data and the most recently stored data has to be recovered first. On the other hand, queues are used when the data has to be recovered in the same order that it was stored.

2. Self-referential structures

Structures may not be nested in the sense that a structure can contain a structure of the same type as itself. However, structures may contain pointers to structures of their own type. For example, we may define a person structure that contains a pointer to another person structure.

[image: image4.wmf]1

x

We can then easily imagine forming a list of person structures with the next structure in the list being pointed to by the neighbour variable.

[image: image5.wmf]2

x

It is easy to construct code that creates two person structures and points one at the other.

3. Linked lists

A list is a sequence of elements of a given type. Lists arise in a variety of applications such as information retrieval, event simulation and programming language compilers. Lists have the advantage over arrays in that elements can be easily inserted and deleted in the middle of the list.

In a linked list, pointers are used to link successive list elements. A singly linked list is made up of nodes where each node consists of an element of the list and a pointer to the next node on the list. The first element of the list is often known as the head of the list and the last element the tail of the list. The figure below shows a diagram of a 3-element linked list with list elements denoted as
[image: image1.wmf]i

x

 and indicating the list head and tail pointers.

The code shown below gives the form of the node structure where the
[image: image2.wmf]i

x

’s are just integers. Any data type, including other structure types may be stored with the list nodes along with the pointer.

It is usual to give the name next to the pointer to the next list node although, of course, any variable name can be chosen.

Functions are required that dynamically allocates storage for a list node and inserts a node into an existing linked list. Function mknode() allocates storage for a node, initializes it, and returns a pointer to it.

There are various ways of inserting a node onto a list depending on where it is to be inserted. In all cases, insertion simply involves moving pointers around on the list. A simple case is to add an item to the end of the list. Thus a function append_node(struct node* np) adds a node, pointed to by np, to the end of the list. The diagram below shows how, by re-assigning next pointer, this is done.

As can be seen, the next pointer of the last list item, which is NULL, is simply re-assigned to point to the item pointed to by np.

There is one slight complication and that is we need to maintain a pointer to the head of the list in order to be able to access the first element in the list and hence, through all of the next pointers, all of the other elements. Thus the function append_node() has to take as an argument information about the first node on the list. Since this argument might be altered in append_node() if the list is initially empty, the argument must be a pointer to a pointer to a struct node. The program below give the code for the append_node() function along with a display_list() function which displays the data element of each node on the list. In the main program, list items are generated and appended to the list. The list data items are then displayed with a call to display_list().

The function append_node() works simply by scanning through the list, starting from the first node and continuing until the last element. It then assigns the next pointer to the node that is to be appended. The scanning until the end of the list is carried out by the following for loop.

Clearly, this is quite an efficient process since, each time a node is to be appended, the list has to be completely scanned from start to finish. For a list consisting of thousands of items, this would be unfeasible. It can be seen from the code for the append_node() function that it returns a pointer to the appended node. This obviously also points to the last list node once the node has been appended. Hence, following one call to append_node(), nodes then can be more efficiently added as follows.

Here an additional node is added to the end of the list by utilizing the pointer returned by append_node().

The previous code showed how to add an item to the end of a list. Clearly we also want to be able to add items to the start of a list and anywhere in the middle of the list. The diagram below shows how, given a pointer to a node after which we wish to add our node, we can re-assign pointers to add the node.

Step 1.

Step 2.

Function insert_node() which inserts a node into a list is given below and follows the 2 step pointer re-assignment process shown in the diagram. The function takes as arguments a pointer to the node after which the node will be inserted, a pointer to the node to be inserted and a pointer to a pointer to the head of the list, since, as for the append_node() function, this pointer might be re-assigned if we insert into an empty list.

The output of the display_list() function following the extra node insertion would be as follows.

list element = 0

list element = 2

list element = 4

list element = 6

list element = 8

list element =10

list element = 11

list element = 12

list element = 14

list element = 16

list element = 18

As can be seen, this program scans the list created using the append_node() function and inserts a node halfway along the list, after the node whose data item is 10.

Deleting a node from the list is equally simple and again simply involves adjusting pointers. The diagram below shows how a node can be deleted.

As can be seen, the pointer of the previous node is re-assigned to point to the node after the node to be deleted. It is the responsibility of the programmer to de-allocate the memory of the deleted node using the free() function call. One problem with deleting nodes is that the previous node in the list is not directly accessible with single linked lists (in other words, lists that only have a single pointer to the next item in the list and not the previous item also). Hence a search has to be made for the previous node, which makes deleting nodes a rather inefficient process.

The function delete_node() which deletes a specified node from the list is given below. If the node to be deleted is the first on the list, then the pointer to the head of the list has to be re-assigned. Hence this is passed to the delete_node() function.

As can be seen, the function delete_node() has to search the list for the previous node to the one that is to be deleted. delete_node() returns the deleted node and hence a call to free() can made after the function exits allowing the memory to be de-allocated.

Probably a more common requirement than deleting a specified list node is to search the list for a specific data item and delete that node. The function delete_item() takes as argument the value of the (integer) data item to be searched for and deleted. This function returns a 1 if the deletion was successfully carried out and 0 otherwise. For example, the data item might not exist in the list and this has to be checked for in the function making it slightly more complex than delete_node(). Also, the function carries out the memory de-allocation itself instead of returning a pointer to the deleted node for it to be de-allocated outside the function.

A common requirement of a linked list is to be able to traverse it in both directions. So far, the list can only be traversed in the forward direction using the next pointer within the node structure. As has been seen, this makes, for example, deleting a node from the list particularly inefficient. A doubly linked list has both a next pointer pointing forward and a prev pointer pointing backwards as shown in the diagram.

The node structure comprising each list element is now declared as follows.

The functions for appending, inserting and deleting nodes from a doubly linked list, whilst slightly more complicated than fro a singly linked list, can easily be implemented. These functions have been left as an exercise.

4. Stacks and queues

A stack is a data structure that allows elements to be inserted (pushed) onto the stack and retrieved (popped) from the stack in the reverse order. Stacks are usually referred to as a LIFO (last-in-first-out) structure to reflect this. Stacks are commonly used as a memory element in a microprocessor to store return addresses when a function call is made and can be implemented in either hardware or software.

Stacks can easily be represented by a simple array where the top of the stack is tracked as elements are pushed and popped. However, as we know, the array size cannot grow dynamically and hence stack overflow is possible with this sort of implementation.

In the linked list representation of a stack, new elements are pushed onto the stack by allocating storage for them and appending them to the front of the list. Elements are popped from the stack by deleting them from the front of the list and freeing the storage. The following figure depicts a linked list representation of a stack.

 The functions push() and pop() are shown below.

The pointer to the stop of the stack, top, is declared as a global so it is not necessary to pass it as a parameter to the push() and pop() functions. These functions simply re-assign the top pointer as shown in the diagrams below. pop() returns the integer data item that is part of the node and not the node itself.

The program below shows how the stack can be used to reverse the order of a sequence of integers inputted from the keyboard.

As can be seen, values are popped from the stack until the top pointer is NULL at which time, the stack is empty.

A queue is a data structure that allows elements to be retrieved fro the queue in the same order that they were added. Thus, the element that has been on the queue the longest is the next one to be retrieved. Queues are often used in event simulation software to store the sequence of events to be carried out. The figure below shows how items are added to the back of the queue and taken from the front.

When a queue is set up, pointers head and tail, both initially set to NULL, are maintained which point to the front and back of the queue respectively. Thus items are removed from the head of the queue and join the queue at the tail.

The functions add() and remove() are shown below. These functions add an item to the tail of the queue and remove an item from the head of the queue respectively. One slight complication is that, for removing an item, the queue has to be scanned from its tail to the item just before the item at the head of the queue in order that the next pointer can be updated. This is obviously inefficient and a more efficient implementation of the queue would be using a doubly linked list. Its also important to check when the queue has only a single item, in which case, the head and tail pointers are the same. In this case, following a call to remove(), these pointers are then set to NULL.

The following diagram show how the head and tail pointers are updated when items are added and removed from the queue.

5. Binary trees

A tree imposes a hierarchical structure on a collection of items. Trees arise in many computer science applications such the organization of information in a database system and the representation of the syntactic structure of source programs in compilers. Trees are also used in the representation of sets, in decision making and in computer games. A binary tree is one where a node has, at most, 2 descendants as shown in the figure below. One special node, the root of the tree is at top of the tree and the nodes at the bottom, the leaves, have no descendants.

The tree node structure now must include a left and right pointer to the descendant nodes and is declared as follows.

Thus pointers lchild and rchild point to the left and right descendant (or children) of the node. Each node contains an integer data item as in previous examples.

The following function creates a binary tree structure by inputting positive integers from the keyboard and creating a node structure. If a -1 is input, then that sub-tree is left empty (such as the left sub-tree under the node with data item 2 in the figure above). As can be seen, the function is recursive as the tree itself is a highly recursive structure where each sub-tree of a binary tree node is itself a binary tree. Think carefully about this function and be clear about how the recursion works. Most, if not all, functions that operate on trees are recursive.

To input the above binary tree, the following sequence of integers must be input from the keyboard :

6 5 4 -1 -1 3 -1 -1 2 -1 1 -1 -1

Another consideration is visiting each of the tree nodes in a particular order. Algorithms to visit tree nodes are often referred to as tree-traversal algorithms. The three most important traversal algorithms are known as preorder, inorder and postorder traversal. These are defined (recursively) as follows.

The preorder traversal of a tree T is the root of T, followed by the preorder traversal of nodes in the left sub-tree of T and then the preorder traversal of the right sub-tree of T.

The inorder traversal of a tree T is the inorder traversal of nodes in the left sub-tree of T, followed by the root of T, and then the inorder traversal of the right sub-tree of T.

The postorder traversal of a tree T is the postorder traversal of nodes in the left sub-tree of T followed by the prostorder traversal of the right sub-tree of T and then the root of T.

Code is shown below for each of these traversal algorithms. On visiting each node of the tree, the integer value stored at the node is outputted. For the tree shown in the above diagram, the order which the integers are printed out is as follows.

· Preorder – 6 5 4 3 2 1

· Inorder – 4 5 3 6 2 1

· Postorder – 4 3 5 1 2 6

Ensure that you understand these orderings. For example, in the case of preorder traversal, the root comes first followed by the left and right sub-trees in that order. Thus the root node storing the value 6 is printed first and then the left sub-tree is visited. The same process is applied to the left sub-tree so the root of the left sub-tree is visited first which stores the value 5. This process is repeated until all of the nodes in the tree are visited.

As can be seen, each function have a different order of visiting a node (which calls the printf() function) and recursive calls to visit the left and right sub-trees.

Exercises

1. Write functions count_nodes() and delete_all_nodes() which returns a count of the number of nodes on a list and deletes all of the nodes on a list freeing up the memory respectively.

2. Re-write functions append_node(), insert_node() and delete_node() for doubly linked lists.

3. Implement the queue using doubly linked lists. Show, in a similar way to the example program using the stack, how items are added to the queue and removed in the same order (not reverse order as for the stack).

4. The level ordering of a tree first lists the root, then all the nodes at depth 1, then all the nodes at depth 2 and so on. Nodes at the same depth are listed from left to right. Write a program to list the nodes of a tree in level order.

EEM1E2. Advanced C Programming and Algorithmic Problem Solving

struct person

{

 	char name[20];

	int age;

	char address[60];

	struct person* neighbour;

};

name[]

age neighbour

address[]

name[]

age neighbour

address[]

struct person p1 = {{“John Smith”},{20},{“30 Elmtree Drive”}};

struct person p2= {{“Alf Jones”},{25},{“31 Elmtree Drive”}};

p1.neighbour=&p2;

printf(“I am %s, age %d and live at %s”,p1.name,p1.age,p1.address);

printf(“My neighbour is %s, age %d and lives at %s”,

p1.neighbour->name,p1.neighbour->age,p1.neigbour->address);

 � EMBED Equation.3 ���

head

 � EMBED Equation.3 ���

 � EMBED Equation.3 ���

tail

struct node

{

 	int data;

	struct node* next;

};

struct node* mknode(int data)

{

	struct node* np;

	np = (struct node*) malloc(sizeof(struct node));

	if (np)

	{

		np->data=data;

		np->next = NULL;

	}

	return np;

}

struct node* append_node(struct node** head, struct node* np)

{

	struct node* n;

	if (*head==NULL)

	 	*head=np;

	else

	{

	 	for (n=*head; n->next!=NULL; n=n->next);

	 	n->next=np;

	}

	return np;

}

void display_list(struct node* head)

{

	struct node* n;

	for (n=head; n!=NULL; n=n->next)

	 	printf("list data element = %d \n",n->data);

}

int main(void)

{

	int i;

	struct node* n;

	struct node* head=NULL;

	for (i=0; i<10; i++)

	{

		n=mknode(i);

		append_node(&head,n);

	}

	display_list(head);

	return 0;

}

np

	 for (n=*head; n->next!=NULL; n=n->next);

struct node* n;

struct node* n1;

for (i=0; i<10; i++)

{

	n=mknode(i);

	n1=append(&head,n);

}

/* Append extra nodes */

n=mknode(11);

n1->next=n;

n1=n;

Node to be added

Add node after this node

struct node* insert_node(struct node** head, struct node* np,

 struct node* n_aft)

{

	if (n_aft)

	{

		if (*head==NULL)

	 		*head=np;

		else

		{

			np->next=n_aft->next;

			n_aft->next=np;

		}

	}

	return np;

}

int main(void)

{

	int i;

	struct node* np;

	struct node* n;

	struct node* head=NULL;

	for (i=0; i<10; i++)

	{

		n=mknode(2*i);

		np=append(&head,n);

	}

	/* Insert a node half way */

 	for (n=head; n->data!=10; n=n->next);

	np=mknode(11);

	insert(&head,np,n);

	return 0;

}

Node to be deleted

Pointer after node deletion

struct node* delete_node(struct node** head, struct node* np)

{

	struct node* n;

	if (*head==NULL)

		return NULL;

	else if (np==*head)

		*head=(*head)->next;

	else

	{

	 	for (n=*head; n->next!=np; n=n->next);

		n->next=np->next;

	}

	return np;

}

	

struct node

{

 	int data;

	struct node* next;

	struct node* prev;

};

int delete_item(struct node** head, int data)

{

 	struct node* n;

 	struct node* np;

 	 if (*head==NULL)

		return 0;

 	else if (data==(*head)->data)

 	{

		np=(*head);

 	*head=(*head)->next;

		free(np);

		return 1;

}

 	else

 	{

 	for (n=*head; (n->data!=data)&&(n->next!=NULL); n=n->next)

			np=n;

		if (n->data==data)

		{

 		np->next=n->next;

			free(n);

			return 1;

		}

		else

			return 0;

 }

}

int main(void)

{

int data;

	struct node* head=NULL;

	/* Create list */

	.

data=14;

	if (delete_item(&head,data))

	 	printf("Item %d successfuly deleted \n",data);

	return 0;

}

top

#include <stdio.h>

#include <stdlib.h>

struct node

{

	int data;

	struct node* next;

};

struct node* top=NULL;

void push(int val)

{

	struct node* np;

	np=(struct node*)malloc(sizeof(struct node));

	if (np)

	{

		np->data=val;

	 	np->next=top;

		top=np;

	}

}

int pop(void)

{

	struct node* np;

	int val;

	if (top)

	{

		val=top->data;

		np=top;

		top=np->next;

		free(np);

	}

	return val;

}

top

Pushing an element onto the stack

Popping an element from the stack

top

Element popped

int main(void)

{

	int i;

	do

	{

		printf("Input a positive integer : ");

		scanf("%d",&i);

		if (i!=-1)

			push(i);

	} while (i!=-1);

	printf("Popping values: ");

	while(top)

	{

		i=pop();

		printf("%d ",i);

	}

	printf("\n");

	return 0;

}

	

		

Items added here

This item removed next

struct node* head=NULL;

struct node* tail=NULL;

void add(int val)

{

	struct node* np;

	np=(struct node*)malloc(sizeof(struct node));

	if (np)

	{

		np->data=val;

	 	np->next=tail;

		tail=np;

		if (head==NULL)

			head=np;

	}

}

int remove(void)

{

	struct node* n;

	struct node* np;

	int val;

	if (head)

	{

		if (head==tail)

		{

			val=head->data;

			free(head);

			head=tail=NULL;

		}

		else

		{

			val=head->data;

			for (n=tail; n->next!=head; n=n->next);

			np=head;

			head=n;

			free(np);

		}

	}

	return val;

}

head

tail

Root node

Next item to be removed

Item to be added

Leaf nodes

6

5

4

3

2

1

struct node

{

	int data;

	struct node* lchild;

	struct node* rchild;

};

	

struct node* mktree(void)

{

	int val;

	struct node* np;

	scanf("%d",&val);

	if (val != -1)

	{

		np=(struct node*)malloc(sizeof(struct node));

		if (np)

		{

			np->data=val;

			np->lchild=mktree();

			np->rchild=mktree();

			return np;

		}

	}

	else

		return NULL;

}

int main(void)

{

	struct node* root=mktree();

	return 0;

}

void visit_preorder(struct node* tree)

{

	int val;

	printf("%d ",tree->data);

	

	if (tree->lchild)

		visit_preorder(tree->lchild);

	if (tree->rchild)

		visit_preorder(tree->rchild);

}

void visit_inorder(struct node* tree)

{

	int val;

	if (tree->lchild)

		visit_inorder(tree->lchild);

	printf("%d ",tree->data);

	if (tree->rchild)

		visit_inorder(tree->rchild);

}

void visit_postorder(struct node* tree)

{

	int val;

	if (tree->lchild)

		visit_postorder(tree->lchild);

	if (tree->rchild)

		visit_postorder(tree->rchild);

	printf("%d ",tree->data);

}

_1037791764.unknown

_1037791811.unknown

_1037791850.unknown

_1037791592.unknown

