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Lecture 7. Searching and sorting

In this lecture we will cover :

· Introduction to searching and sorting

· Algorithm complexity

· Searching algorithms

· Sorting algorithms

1. Introduction to searching and sorting

The material in this lecture is a study of two important general programming techniques :

· Searching

· Sorting

Searching is a process of finding a particular element in an array or a file. A good example of an application of searching is in word processors where you can do a search for a single word or group of words in a large document. You have probably seen just how efficient this is which is because of the efficiency of the searching algorithm coupled with the data structure used to store all of the words in the document. We will see more of this later.

Sorting is the process of rearranging the elements of an array so that they are defined in some specific order. A typical example is to rearrange an array of character strings into alphabetical order. Sorting is a fairly common technique used in commercial applications involving vast amounts of data that must be sorted. For example, an electricity billing program might sort all of the customers into alphabetical order prior to printing out the electricity bills.

We will assume that all of the elements to be searched or sorted are stored in simple arrays. An important consideration when designing algorithms is to consider the complexity of that algorithm. The word complexity is a term used by computer scientists to indicate the efficiency of an algorithm or, in other words, how quickly the algorithm runs for a given number of elements. We will see that we can design algorithms with considerable variations in complexity.

2. Algorithm complexity

It is fairly clear that one algorithm might be more efficient than another algorithm at carrying out the same operation such as sorting an array of integers. This obviously manifests itself in the length of time that the program takes to run. Clearly more efficient algorithms will usually mean that the program containing the algorithm will run more quickly. However, we must be a little careful in always jumping to this conclusion as we need to take into account the inherent difficulty in the problem at hand. An inefficient algorithm trying to solve an easy problem may run quicker than an efficient algorithm trying to solve a more difficult problem.

In computer science, evaluating the relative efficiency of algorithms is an important topic and can require detailed mathematics. In this section we will just introduce some basic concepts by comparing the performance of a few simple algorithms. 

Evaluating algorithmic efficiency
Suppose we want to determine which of two algorithms solves a particular problem more quickly. We could encode both algorithms in  C and run each program in order to see how long each one takes. There are facilities within most operating systems that enable program execution time to be accurately measured and so we can get precise timing information for both algorithms (we would need to take into account input/output times but these are generally much smaller than the execution time of the algorithm). However, this approach can be misleading because the time taken by an algorithm to solve a particular problem depends on the input data  and, more specifically, the size of the input data. 

As an example, suppose the graph below shows the execution time for 2 algorithms, algol_1 and algol_2 to sort an array of N integers into ascending order. It is clear that, for small array sizes, algol_1 will sort the array more quickly than algol_2 but for larger array sizes, algol_2 is faster. The point is, by any measure of algorithmic complexity, algol_2 is the most efficient algorithm because the execution time grows only linearly with N. However, this would not have been apparent by simply measuring program execution times for small values of  N. Unfortunately, in order to determine algorithmic complexity, we need to analyse the algorithm itself which, sometimes, can be a complex task. 
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Big-O notation
The computational complexity of an algorithm denotes the execution time of an algorithm as a function of the problem size N. Usually the problem size is obvious. For example, in sorting N integers, the problem size is N. Computer scientists use the big-O notation to denote this relationship. The letter O stands for order as it is used in the phrase of the order of where it signifies approximation.

We will not give a formal definition of the big-O notation here but, rather, we will look at an intuitive definition to introduce it and use it later on when we look at specific searching and sorting algorithms.

An algorithm is said to run in constant time if the time it takes to run is independent of the problem size. In big O notation, a constant time algorithm has an O(1) complexity. An example might be pushing or popping an element from the top of a stack data structure. In this case, the size of the stack doesn’t determine the time it takes to push or pop an element.

An algorithm is said to run in linear time if the time it takes to run is proportional to the problem size. In big O notation such an algorithm has an O(N) complexity. Examples include determining the maximum element size in an array, incrementing all of the values of an array etc. Each of these operations requires a single scan through all of the array elements and hence, doubling the array size would double the algorithm execution time.

An algorithm is said to run in quadratic time if the time it takes to run is proportional to the square of the problem size. In big O notation such an algorithm has an O(
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) complexity. A classic example of this is multiplying an NxN matrix by an N-element vector. The result of such an operation is another N-element vector and to produce each element of the output vector requires N multiplications and 
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 multiplications are required (we usually neglect the number of additions since the execution time for addition is much lower than for multiplication). It is clear that doubling the problem size (the value of  N) would increase the execution time by approximately 4.

Other algorithm complexities are possible, not just powers of  N. A very good example from signal processing is the Fast Fourier Transform (FFT) algorithm that you may learn about in your third year. This algorithm was originally developed by geophysicists working on oil exploration to produce the power spectrum of seismic signals. Previous algorithms had an O(
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) complexity but, through the use of some very clever algorithm design, the FFT algorithm reduced this to O(
[image: image5.wmf]N

N

2

log

) complexity. Signal sizes of several thousand elements are typically used in seismic signal processing so this innovation represents a speed up of several hundred and revolutionized the oil exploration industry. 

3. Searching algorithms

Linear search
This is the simplest and most intuitive form of search – it simply looks at each element of the array until the item is found, returning the array index if it is found and –1 if it is not found. The function find_integer() searches an N  element array until an integer key is found.


This is clearly a very simple function and it is also fairly obvious that doubling the length of the array, will double the number of array elements that must be scanned. Obviously if the array element that is searched for is at the start of the array, less elements must be scanned but this is balanced out by cases where the element searched for is towards the end of the array. However, for the worst case situation where the element searched for is the last element in the array, the linear search algorithm is O(N) where N is the size of the array. 

The following program uses the same linear search algorithm to search for a string. In this case the function find_integer() has been replaced by the function find_string(). The test or string equality has been carried out by the string library function strcmp(). The program prompts for a city name in the form of a string and calls find_string() which returns the array index or –1 if the city is not in the array.


Binary search

Clearly, in the above program, it takes little time to search for a given city name in a short list cities. However, if there were thousands of cities then the linear search algorithm is too inefficient. A different search algorithm known as a binary search is more efficient because it employs a pre-sorted array where, in the case of the array of city names, it is sorted in alphabetical order and, in the case of the array of integers, it can be sorted in increasing or decreasing value.

To illustrate the binary search technique, consider a sorted array of city names :


Suppose we are searching for Sheffield in this list. Instead of starting at the start of the array as in the case of the linear search algorithm, we start by picking an element somewhere near the center of the array. This would be element number 6, London. We can then compare alphabetically London and Sheffield. Because the array is sorted alphabetically, we know that Sheffield must be below London. We thus pick another element midway between London and the last element in the array which is Portsmouth. Again an alphabetic comparison is made between Portsmouth and Sheffield and, once again, Sheffield must be below Portsmouth. The process is repeated and this time the element midway between Portsmouth and the end of the array is Sheffield which is the required city. It can be seen that only 3 comparisons were required instead of 12 comparisons in the case of the linear search algorithm.

Why is the algorithm known as a binary search? The answer is, at each iteration, a two-way (binary) decision is made to adjust the search area mid-way between the current array index and either the beginning or end of the array. The implementation of the binary search algorithm, although more complex than the linear search algorithm, is still straightforward. The following function, bin_find_string(), implements the string search algorithm using the binary search algorithm and is called in exactly the same way as for string_search() using the linear search algorithm. However, note that the city_table string array is now sorted into alphabetical order.

The function works by maintaining two integer variables, lh and rh which

store the lower and upper array indices defining the limits of the search. These are initialized to 0 and N-1. Variable mid is the mid-point between  lh and rh and, on each iteration, this variable becomes the lower (upper) limit of the search if the target string is alphabetically above (below) the string stored at index mid. Obviously, if the string at index mid is the target string, then index mid is returned. The diagram below shows the first two iterations of the search for the target string Sheffield which should make this clearer.










There is also a simple recursive implementation of the binary search algorithm. Given variables lh and rh which define the lower and upper indices of the binary search (initialized to 0 and n-1), after each iteration they are updated and the binary search algorithm carried out again for the updated variables. This lends itself to a simple recursive implementation, where now, in the function rec_bin_find_string(), the variables lh and rh are included as function arguments.


Efficiency of the binary search algorithm
From our previous discussion, it is intuitively clear that the binary search algorithm is more efficient than the linear search algorithm because it has do less string comparisons in finding its target string. Can we quantify this increased efficiency in comparison with the linear search algorithm? 

We have already seen that linear search is O(N) which occurs in the worst case where the target string is the last element in the array. In the worst case, it is relatively simple to evaluate the number of string comparisons required for the binary search algorithm. After the first string comparison, the algorithm can immediately eliminate half of the array elements leaving only N/2 elements to search. After the second call, it can rule out half of those elements leaving N/4 elements and so on. Thus in each iteration, the number of elements to search is halved. Eventually, after dividing N  by 2 enough times, there will only be a single element left and, by then, the target string must have been found. Hence, we conclude that the worst case time for the binary search algorithm to find its target string equals the number of times we can divide N by 2. Suppose we represent this number by k. We can write down the following equation :
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We can then multiply by all of the 2’s on each side of this equation to give the following equation :
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We can then solve this equation to give :
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Thus, to search an array of N elements required N comparisons for the linear search algorithm and 
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 comparisons for the binary search algorithm. For large values of N the increase in efficiency is startling as the following table shows. For example, even for a 1000-element array, there is a 100–fold speed-up in efficiency over the linear search algorithm!


Of course, the problem with the binary search algorithm is that the array elements must be sorted  prior to the algorithm being invoked. If they are not, then the linear search algorithm must be used. As we shall see in the second half of this lecture, this does not turn out to be a major obstacle since there are equally efficient algorithms for sorting data and usually the sorting need only be carried out once whereas it is usually necessary to search an array many times in most applications.

Hashing
Hashing is a completely different, and more advanced, approach to searching than the linear and binary search algorithms which are comparison-based methods of searching. In hashing, each element in the array to be searched is represented by a key which can be just an integer or a character string. A mathematical transformation is then carried out on the key which translates this key into an address or an index in the array. This mathematical transformation is known as a hash function. Given a key k, we denote this hash function by h(k). 

The diagram below shows the basic idea behind hashing where two objects i and j with keys k(i) and k(j) are hashed to different addresses.








Before we look at specific algorithms there are a number of fairly obvious requirements that the hash function h() must meet. An occurrence that more than one key is hashed to the same location is called collision. In other words, a collision occurs when :
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Collision is unavoidable but the hash function must be designed such that collision is minimized. There are a number of techniques which have been developed for resolving collision and one of these will be discussed below.

Also, if we assume that the search array is of size N and then the hash function should transform the search key into an array address. In other words :
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Ideally one would wish to produce a hash function which gives a unique address value for each key but this is very hard to achieve. However, the hash function should avoid clustering within the search array and produce a good even distribution of values as this will tend to minimize collisions.

Finally, the hash function must be fairly simple and efficient to compute. Typically, the hash function involves integer arithmetic calculations. 

Perhaps the most commonly used method for hashing is to assume  N is prime (the reason for this is given below) and, for any key k, 
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. The modulo function has the nice property of evenly distributing the array indices thus minimizing collisions. It is also easy and efficient to compute.
Example
As an example of a simple hashing application, suppose our keys consist of strings of alpha-numeric characters. For example, the key could be the name, address or a reference number of a customer in an electricity billing application. Therefore, the first thing we have to worry about is how to convert the character string into an integer to which we can then apply the hash function. One simple way of doing this is to convert the character string into a binary sequence. Assuming we only have upper case alphabetic characters in our string, we could represent each letter in the string by a 5-bit sequence of the position of the letter in the alphabet. Hence ‘A’ is represented by 00001, ‘B’ by 00010 and so on. Thus the string AKEY is represented by the bit sequence 00001010110010111001 which is equivalent to 44217 in decimal. This is equivalent to representing the key as a base-32 number, one digit for each character in the key. (Obviously, if we wanted to include numeric, upper and lower case alphabetic characters along with special characters such as # and $ then we need to increase the number of bits per characters. ) Thus the key 44217 can be written as :
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Incidentally, this integer representation of the string to be hashed illustrates why N is usually taken as a prime number for the modulo-N hash function. For example if we took N=32, then the result of the hash function would only depend on the final character in the string. For N=1024, only the final two characters of the string would determine the result of the hash function. Indeed, for N equal to the sum of powers of 32, the result of the hash function would depend on a sub-set of characters in the string and not all of them. This is obviously an  undesirable situation, as it would lead to clustering of the addresses and a lot of collisions. The easiest way to avoid this is to make N prime.

Typically we would want to hash on  strings longer than AKEY. As an example, the string VERYLONGKEY would correspond to the  following 55-bit string :

1011000101100101100101100011110111000111010110010111001

or the following decimal number :
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This number is far too large to be represented internally as an integer but a solution is at hand if we consider the computation of the modulo-N  hash function described above.  The above number can be written as follows :
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Now we wish to compute this number modulo-N. Using arithmetic properties of the modulo function, it can be proved that the following expression holds for any integers p and q :
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It’s left as an exercise for you to try and prove this. However, what it means is that there is a very simple implementation for the computation of the modulo hash function for even long keys. Thus if array key[] contains the integers computed from the string (in our example, key[]={22,5,18,25,12,15,14,7,11,5,25}) then the following C-function hash_key() returns the address that the original string is hashed to. As can be seen, each time we multiply by 32, we then take the result modulo-N. This stops the number growing by factors of 32 and the hash value can computed easily and without arithmetic overflow.


The simple program below inputs a string comprising upper case letters only and prints out its address, which is just a number between 0 and N-1, using function hash_key(). The array size taken N is 101 although, in practice, much larger sizes would be used. You can use this program to test for the frequency of collisions between different string keys by adapting it to generate random sequences of character strings of different lengths and determining the probability of a collision occurring. 


Handling collisions

We need to decide how to handle the case when two keys hash to the same address. The most straightforward method is to build, for each address, a linked list of the records whose keys hash to that address. The keys which hash to the same address are kept in order in the linked list which makes searching down a list for the required record very efficient as the whole list need not be searched. The diagram below illustrates the data structure used which is essentially an array of N linked lists. As can be seen, some of the array addresses point to a single record but some point to multiple records where collisions have occurred. 

This technique is known as separate chaining because colliding records are “chained” together in separate linked lists. There are other more sophisticated approaches to handling collisions which we will not go into here.

Obviously the amount of time required for a search depends on the length of the lists and hence the number of collisions. Clearly, if N is the size of the array and M is the number of separate keys, then for a hash function that evenly distributes hash addresses, the average size of each list would be M/N and the search time would be linearly dependant on this value and hence of complexity O(M/N).


4. Sorting algorithms
Introduction

In many programming applications, sorting data is often required. This involves arranging a list of values (usually represented in an array) into some well-defined order. For example, a list of numbers may be ranked in the order from the lowest to highest values. Alternatively, a list of character strings may be ordered alphabetically. Despite the difference in detail of these two applications (one uses numbers and the other uses strings), the problem to be solved is exactly the same. Given a list and a mechanism for comparing two elements in the list, how can the elements of the list be re-arranged so that the elements are properly ordered.

The selection sort algorithm

This is the simplest and most intuitive of all of the sort algorithms. To explain it, suppose we have an array of integers which we wish to sort into ascending order. The algorithm is iterative and, in the first iteration, we search through the array to find the smallest element and then swap it with the first element in the array. The diagram below shows the initial array in random order and the array after the first iteration.



As can be seen, elements 7 and 35 have been swapped. After the first iteration, array index 0 has the correct value and no longer needs to be considered in any further processing. The next iteration uses the same strategy to correctly fill the second position in the array. The smallest value in the array is found (excluding the value found in the previous iteration which occupies array index 0) and swapped with the element in the second position in the array. Thus, after the second iteration, the array now has the following entries :


As can be seen, element 19 is swapped with element 22 and array index  now has the correct  value and need no longer be considered in further processing. 

The above steps are repeated until the last but one array index position is filled implying that the last index position is also correct. We can write pseudo-code to specify this algorithm as follows :


The pseudo-code specifies variables lh and rh which are the current initial array index position (initialized to zero) and the array index position of the smallest element. For example, after iteration 1 is complete, the values of lh and rh for iteration 2 are shown below.


Below is shown the C function sort_integer_array()  for the selection sort algorithm. This function is the main function for carrying out the sort and is passed the unsorted array and the array size as arguments. Once the function is completed, the array argument now contains the sorted array. Thus this function sorts the array in-place which is very convenient for the user of this function. Another function, find_smallest_integer(), is also shown, and this function simply searches the array to find the smallest element. It takes as arguments the array, the lower index limit of the search as this changes between each iteration (it is just the value lh) and the array size. This function returns the array index of the smallest element.


It should be noted that the selection sort algorithm is quite similar to the well-known bubble sort algorithm. Whereas the selection sort algorithm swaps the array element lh with the smallest remaining array element, bubble sort keeps iterating through the array swapping adjacent elements if they are out of order. As soon as a complete iteration through the array requires no elements to be swapped, it is then fairly obvious that the array is sorted. It turns out that bubble sort and selection sort have similar (inefficient!) complexities.

Efficiency of the selection sort algorithm
The nice thing about the selection sort algorithm is its simplicity. The algorithm is easy to understand and easy to program. Unfortunately, the algorithm is also computationally inefficient which becomes a serious problem when trying to sort arrays containing many thousands of elements. 

It is easy to see where this inefficiency comes from if we think about how the algorithm sorts an array of N  numbers. The first iteration of the algorithm cycles through the array N-1 times trying to find the smallest number. In other words it does N-1 comparisons. The second iteration cycles through the array N-2 times, the third iteration N-3 times and so on. Hence, the total number of comparisons made in sorting an array of  N elements is :
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The selection sort is said to have O(
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) (or quadratic) complexity because of the appearance of the 
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 in this equation. In other words, for large values of N, the 
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 term dominates the N term. The fact that we have also divided the 
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 term by 2 makes no difference to the complexity - doubling the array size still increases the computation time by 4.

Algorithms with O(
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) complexity are bad news and usually impractical for realistically sized problems. In the next section, a more advanced sort algorithm is described with a much lower complexity.

The merge sort algorithm
The merge sort algorithm is a fairly simple extension of the selection sort algorithm that uses a divide and conquer strategy to sort an array. Remember that selection sort has an O(
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) complexity. This means that doubling the size of the array increases the computational time by 4. Paradoxically merge sort uses this fact to its advantage in that if we split the array into 2 approximately equal sub-arrays and sort each sub-array then the complexity is approximately half the complexity to sort the original array. This is because sorting each sub-array is one quarter the complexity of sorting the original array and two quarters make a half. We can continue this splitting into sub-arrays in a recursive fashion until we are left to sort arrays of single elements.

The following example demonstrates the principle behind the merge sort. Suppose the following array is to be sorted :


We can split this array up into two 5 element sub-arrays as follows :


We could then sort each array :


Finally, we can merge the two sub-arrays. This is easy since the sub-arrays are already sorted. Thus, we maintain a pointer to each element of each sub-array and the smallest element pointed to by either of the pointers is copied to the final array. The diagram below shows the first few steps of how this is done.











In fact, the merge sort algorithm doesn’t stop at a single splitting of the original array. It continues splitting each sub-array until the arrays contain just a single element. The single element arrays can then be merged. The algorithm is naturally expressed recursively. The pseudo-code for the algorithm is as follows :


This pseudo-code maps fairly straightforwardly to C. The final step, that of merging the two sorted sub-arrays, can be implemented by a separate function merge_arrays() which takes as arguments the two arrays to be merged and their sizes. Also the array variable name that the arrays are merged into is also an argument. Remember, array names are pointers and hence the function can change the contents of arrays passed as arguments. The C implementation of the functions merge_sort_integer_array() and merge_arrays() is given below.



Efficiency of the merge sort algorithm
The computational complexity of the merge sort algorithm can be divided into two components :

1. The amount of time required to execute the operations at the current level of the recursive decomposition

2. The time required to execute the recursive calls

At the top level of the recursive decomposition, the computational cost of performing the non-recursive operations is proportional to N. This includes the two for loops for splitting the array into the two sub-arrays and the merging of the sorted sub-arrays. Thus, the complexity of the call to merge_sort_integer_array() at the top level of the recursive decomposition is O(N). Here we are ignoring the cost of the two recursive calls to merge_sort_integer_array() because they are constant, independent of N. 

At the next level of decomposition we are sorting 2 arrays of size N/2. This has a computational cost of N/2 operations per sub-array and hence an overall cost of N. We can continue this logic and we find that at each stage of the recursive decomposition, the cost is the same and it is proportional to N plus the time for the two recursive calls which are constants. The diagram below illustrates the above logic where it can be seen that at each level, the arrays to be sorted get smaller but there are more of them resulting in the same computational cost per level.









In order to compute the complexity, we simply multiply the complexity at each recursive level, which is O(N), by the number of levels. The total number of levels is equal to the number of times N can be divided by 2 before N reaches 1. This is similar to the analysis we did for the binary search algorithm. We can write down the following equation :
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We can then multiply by all of the 2’s on each side of this equation to give the following equation :
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We can then solve this equation to give :
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Thus to determine the overall complexity we multiply the number of recursive decomposition levels k by the complexity per level O(N) and hence the complexity of the merge sort algorithm is O(N)
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The table below shows a comparison of the complexities of the selection and merge sort algorithms where it can be seen that for even modest values of N the merge sort algorithm is hugely more efficient.


Exercises

1. Edit the programs which implement the linear and binary search algorithms so that they print out the number of comparisons made before finding their target. Compare this figure in each case for searches of a target over randomly sorted arrays to get some idea of the average search time. (Remember, the complexity expressed in the O(.) notation is an idea of the worst case computational time).

2. Set up a data structure which enables the chaining of records in a hashing application. This should consist of an array of linked lists. Show how, given a hash address, the list can be searched for a particular record (identified by its search key).

3. Implement and test the bubble sort algorithm.

4. Compare the actual running times of the selection and merge sort algorithms. You can do this by including the file time.h which contains a function clock() to measure the current time on the computers clock. Thus, insert the following two statements before and after the call to the sort function :


Plot a graph of the sort function’s running time as a function of the array size N. Do the curves follow approximately the complexities of each algorithm (ie O(
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EEM1E2. Advanced C Programming and Algorithmic Problem Solving



Execution time (ms)



N



algol_2



algol_1



void find_integer(int key, int array[], int N)

{

	int j;



	for (j=0; j<N; j++)

		if (key==array[j])

			return j;



	return (-1);

}







#include <stdio.h>

#include <string.h>





int find_string(char* key, char* array[], int N)

{

	int j;



	for (j=0; j<N; j++)

		if (!strcmp(key, array[j]))

			return j;



	return -1;

}





int main(void)

{



	int found;

	char city[20];

	char* city_table[]={"London","Manchester","Glasgow","Birmingham"};



	printf("Input the required city : ");



	scanf("%s",city);



	found=find_string(city,city_table,4);



	if (found>=0)

		printf("The city is at index %d \n",found);

	else

		printf("City not found! \n");



	return 0;

}
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#include <stdio.h>

#include <string.h>



int bin_find_string(char* key, char* array[], int N)

{

	int j;

	int lh,rh,mid,cmp;



	lh=0;

	rh=N-1;

	while (lh<=rh)

	{

		mid=(lh+rh)/2;

		cmp=strcmp(key,array[mid]);



		if (cmp==0)

			return mid;

		if (cmp<0)

			rh=mid-1;

		else

			lh=mid+1;

	}

	return -1;

}



int main(void)

{



	int found;

	char city[20];

	char* city_table[]={"Birmingham", "Glasgow", "London", "Manchester",};



	printf("Input the required city : ");

	scanf("%s",city);



	found=find_string(city,city_table,4);



	if (found>=0)

		printf("The city is at index %d \n",found);

	else

		printf("City not found! \n");

	return 0;

}
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Iteration 1



lh



rh



mid



Iteration 2
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#include <stdio.h>

#include <string.h>



int rec_bin_find_string(char* key, char* array[], int lh, int rh)

{

	int mid,cmp;

	while (lh<=rh)

	{

		mid=(lh+rh)/2;

		cmp=strcmp(key,array[mid]);



		if (cmp==0)

			return mid;

		if (cmp<0)

			return rec_bin_find_string(key,array,lh ,mid-1);

		else

			return rec_bin_find_string(key,array,mid+1,rh);

	}

	return -1;

}



int main(void)

{

	int found;

	char city[20];

	char* city_table[]={"Birmingham", "Glasgow", "London", "Manchester",};



	printf("Input the required city : ");

	scanf("%s",city);



	found=rec_bin_find_string(city,city_table,0,4);

	if (found>=0)

		printf("The city is at index %d \n",found);

	else

		printf("City not found! \n");

	return 0;

}
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i, k(i)



j, k(j)



Hash function



h(k(i))



h(k(j))



Hash function
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Iteration 1
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for each index position lh in the array excluding the last



Let rh be the index of the smallest value between lh and the end of the array



Swap array elements at index positions lh and rh
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lh



rh



int find_smallest_integer(int array[], int low_index, int N)

{

	int i,spos;



	spos=low_index;

	for (i=low_index; i<N; i++)

		if (array[i]<array[spos])

			spos=i;



	return spos;

}





void sort_integer_array(int array[], int N)

{

	int lh,rh,temp;



	for (lh=0; lh<N-1; lh++)

	{

		rh=find_smallest_integer(array,lh,N);



		temp=array[lh];

		array[lh]=array[rh];

		array[rh]=temp;

	}

}
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Step 1



Step 2



Step 3



Sort N-element array a[]



	N1=N/2

	N2=N-N1



	Create N1-element array a1[]

	Create N2-element array a2[]



	Partition a[] into a1[] and a2[]



	Sort N1-element array a1[]

	Sort N2-element array a2[]



	Merge sorted arrays a1[] and a2[] into a[]





void merge_arrays(int* array, int* array1, int* array2, int N1, int N2)

{

	int p,p1,p2;

	p=p1=p2=0;



	while (p1<N1 && p2<N2)

	{

		if (array1[p1]<array2[p2])

			array[p++]=array1[p1++];

		else

			array[p++]=array2[p2++];

	}



	while (p1<N1) array[p++]=array1[p1++];

	while (p2<N2) array[p++]=array2[p2++];

}



void merge_sort_integer_array(int array[], int N)

{

	int i, N1, N2;

	int* array1;

	int* array2;



	if (N>1)

	{

		N1=N/2;

		N2=N-N1;



		array1=(int*)malloc(N1*sizeof(int));

		array2=(int*)malloc(N2*sizeof(int));



		for (i=0; i<N1; i++)

			array1[i]=array[i];



		for (i=0; i<N2; i++)

			array2[i]=array[n1+i];



		merge_sort_integer_array(array1,N1);

		merge_sort_integer_array(array2,N2);



		merge_arrays(array,array1,array2,N1,N2);



		free(array1);

		free(array2);

	}

}
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Sort array of size N 



Sort 2 arrays of size N/2 



Sort 4 arrays of size N/4



Sort 8 arrays of size N/8
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Double start_time, finish_time, running_time;

.

start_time=(double) clock()/CLOCKS_PER_SEC;



/* Call to the sort function here */



finish_time=(double) clock()/CLOCKS_PER_SEC;



running_time=finish_time-start_time;





int hash_key(int key[], int keysize, int N)

{

	int h,i;



	h=key[0];

	for (i=1; i<keysize; i++)

		h=(h*32+key[i])%N;



	return h;

}



int main(void)

{



	char string_key[128];

	int key[128];

	int h,i,keysize;



	printf("Input the string to be hashed : ");

	scanf("%s", string_key);



	keysize=strlen(string_key);



	for (i=0; i<keysize; i++)

		key[i]=string_key[i]-'A'+1;



	h=hash_key(key,keysize,101);



	printf("String %s hashes to index  %d \n",string_key,h);



	return 0;

}
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