EEM1E2 Lecture 2

Lecture 2. Pointers

In this lecture we will cover :

· Pointers – the basics

· Pointers and arrays

· Two-dimensional arrays

· Pointer arguments to functions – call by reference

· Pointers and dynamic allocation of memory

1. Pointers – the basics

A pointer provides a means of accessing the value of a variable. Essentially, a pointer represents the address of a variable, in other words it is a memory location. Typically, on most computer architectures, a pointer is a 32-bit word.

The simple example below shows how an integer variable number can be accessed through a pointer to it which is called p_number :

This example shows the use of the two operators that we use when manipulating pointers – the address of operator & and the indirection (or contents of) operator *.

The second line of this example declares an integer pointer variable p_number and initializes it to point to the variable number. Thus &number effectively returns the address of variable number. The third line accesses the contents of what the pointer variable p_number points to through the use of the indirection operator. Thus (*p_number) is the same as the variable number. A diagram of how the variables relate to each other is shown below.

Its important to realize that pointers are variables just like any other variable – they just store a 32-bit value which happens to be a memory location. We can manipulate pointer variables just like any other variable. The program below gives an example of this.

Sample program ouput

10 –268438072

11 –268438068

This program prints out both the pointer value and the contents of the memory location that the pointer points to. It also increments the pointer value and its contents. As can be seen the value of the pointer is a fairly meaningless value which is a 32-bit memory location. However, it can be manipulated like any other variable. For example in this program, its value is output and it has been incremented. Note that incrementing a pointer, as we shall see, is a very useful operation for accessing arrays.

This final example shows pointers being used with characters.

Sample program ouput

Q –268438069

Z –268438069

In this case, the value of the char variable c has been modified through indirection of the char pointer variable p_c.

2. Pointers and arrays

Pointers and arrays are intimately related. An array variable is actually a pointer to the first element of the array. As an example, suppose we declare an array of 5 floating point variables :

Variable x is of type array of float. However, it is usually used as if it were of type float* (pointer to a float) and pointing to x[0]:

From the above diagram, it is fairly clear that :

x[0] - same as *x

x[1] - same as *(x+1)

x[2] - same as *(x+2)

.

.

x[i] - same as *(x+i)
In other words, the variable (x+i) is a pointer to the ith array element and hence *(x+i) is the array element x[i].

The example program below shows how an array can be accessed using a pointer.

Sample program output

x[0]=0

x[1]=1

x[2]=2

x[3]=3

x[4]=4

In this program, the pointer to the array xp, initially points at the first element. This is because of the assignment int* xp=x. The statement inside the for loop, xp++ moves the pointer on one array element to the right so that it points to the next element. Incrementing a pointer variable in this way is a common means of skipping though the elements of an array. It is important to understand that xp++ moves a pointer on one element irrespective of the size of each array element. Thus it doesn’t matter if it is an array of integers or an array of doubles, the pointer is still incremented by one array location.

The following example uses 2 array pointers to reverse the order of an array.

In this case, the left and right pointers are initialized to point to the first and last array elements as shown in the diagram. The left and right pointers are then progressively moved right and left with the statements *left++=*right and *right--=temp respectively.

Pointers and character strings

A string is just an array of characters and we can use pointers to access strings just like any other type of array. The following program shows how one string can be copied into another string and is the basis of the strcpy() function that we met in a previous lecture.

Sample program output

Input the source string: abcdefghijklmnop

The destination string is abcdefghijklmnop

As can be seen, the character pointers p_s and p_d are initialized to point to the first elements of the source and destination strings respectively. The actual string copy is carried out with the statement *p_d++=*p_s++. It is important to look at this statement closely. *p_s++ is interpreted as returning the value pointed to by the pointer p_s followed by incrementing the pointer value. Note the difference between this and (*p_s)++ which increments the contents of the location pointed to by p_s.

The other small thing to note about this program is the use of the string terminator ’\0’ in indicating the end of the string.

3. Multi-dimensional arrays

We saw in a previous lecture that a 2-dimensional array is stored internally as an array of 1-dimensional arrays. Hence it should come as no surprise that we can use pointers to access a 2-d array. Let us look again at a 2-d array in order to see how its elements can be accessed using pointers.

Let’s define a 2-d array a[] as follows :

This array is of dimensions 3 rows by 5 columns and is shown in the table below with the array index of each element indicated.

	[0,0]
	[0,1]
	[0,2]
	[0,3]
	[0,4]

	[1,0]
	[1,1]
	[1,2]
	[1,3]
	[1,4]

	[2,0]
	[2,1]
	[2,2]
	[2,3]
	[2,4]

We can consider this array to be a 3-element column array of row arrays of 5 elements each as shown below. Each row is accessed by a[i] for i=0..2.

	[0,0]
	[0,1]
	[0,2]
	[0,3]
	[0,4]

	[1,0]
	[1,1]
	[1,2]
	[1,3]
	[1,4]

	[2,0]
	[2,1]
	[2,2]
	[2,3]
	[2,4]

So, for example, element a[1][2] is the 3rd element of the array pointer to by a[1].

From the above diagram and what we know already about the relationship between pointers and 1-dimensional arrays, we can see immediately that a[0],a[1] and a[2] are pointers (in other words they are of type int*). The program below exploits this fact in order to cycle through each row and column printing out each array element.

Sample program output

a[0][0] = 3

a[0][1] = 1

.

.

a[2][4] = 2

The array is accessed through the statement val=*(p_row+col) where the pointer p_row points to the start of the current row and hence p_row+col is a pointer to the element which is col positions along the row.

Another way to access each array element is to recognize the fact that the elements are stored in row order as shown below.

	[0,0]
	[0,1]
	[0,2]
	[0,3]
	[0,4]
	[1,0]
	[1,1]
	[1,2]
	[1,3]
	[1,4]
	[2,0]
	[2,1]
	[2,2]
	[2,3]
	[2,4]

Hence, if a pointer p points to the first element, it is simply a matter of incrementing this pointer to access each consecutive element. The program below shows how this is done.

Sample program output

element 0 = 3

element 1 = 1

.

.

element 14 = 2

Pointer to a pointer

We have seen how we can access individual rows of our array a[][] using the pointers a[0], a[1] and a[2]. Imagine that these 3 pointers, themselves form an array as shown below. We can then set up a pointer to point to this array of pointers. This will be a pointer to a pointer and is of type int**.

	[0,0]
	[0,1]
	[0,2]
	[0,3]
	[0,4]

	[1,0]
	[1,1]
	[1,2]
	[1,3]
	[1,4]

	[2,0]
	[2,1]
	[2,2]
	[2,3]
	[2,4]

Pointers to pointers are usually used when multi-dimensional arrays are dynamically allocated as we shall see below.

4. Pointer arguments to functions – call by reference

We have seen how arguments are passed to functions by value. In other words, function arguments are copied when passed from the main program into the function. Let’s take another look at the example we had of passing function arguments by value.

Sample program output :

Input a number : 5

The number now equals 5

As can be seen, the value of the argument is left unchanged by the function. However, the whole point of the function is to increment its argument. We can achieve this by passing a pointer to the function. Let’s rewrite the program and pass a pointer argument.

Sample program output :

Input a number : 5

The number now equals 6

We have made 3 modifications to the original program.

· We have passed an integer pointer to the function increment(). In other words, the argument n is of type int*.

· Inside the function, we de-reference n so that (*n) is incremented.

· In the main program, we take the address of the number when we pass it to increment() in order to pass a pointer. Thus increment(&number) is called.
The following diagram illustrates what is going on when we pass a pointer argument to a function. We normally refer to this situation as calling an argument by reference as opposed to call by value. This diagram should be compared with the diagram we had when we discussed call by value.

As can be seen, on entry, the argument of increment() points to (or references) the variable number in the main program. Thus, since we have a pointer to that variable, we can change its value.

Array arguments to functions

A straightforward extension of passing pointers to functions is to pass array arguments to functions using pointers since array names are just pointers to the first array element. As an example, lets re-write the function increment() to increment all of the elements of an array argument.

Sample program output

array[0] = 0

array[1] = 1

.

.

array[4] = 4

array[0] = 1

array[1] = 2

.

.

array[4] = 5

In this case, simply passing the array name (array) to increment() automatically passes a pointer.

5. Pointers and dynamic allocation of memory

In our C programs to date, we haven’t had to worry about how the memory allocated to each declared variable has been allocated. Memory allocation and de-allocation has been done automatically for us. So for example, if we declare a local variable in a function, memory space for that variable is automatically allocated when the function is entered and de-allocated when the function exits. Memory space know as the stack is used for this automatic memory allocation/de-allocation.

We often want the facility to manage the memory allocation/de-allocation ourselves. Dynamic variables are variables whose memory is allocated and de-allocated by the programmer. This provides more flexibility as well as providing a lot of opportunities for program crashes! Dynamic variables are allocated on a memory space known as the heap or the free store.

C uses 2 functions calloc() and malloc() to allocate memory to dynamic variables and free() to de-allocate that memory. The headers for these functions are as follows :

void *calloc(size_t number_of_elements, size_t element_size)

· Allocates a contiguous block of memory.

· Initialises the block to zero.

· Returns the address of the start of the block.

void *malloc(size_t size_of_space)

· Allocates a contiguous block of memory.

· Returns the address of the start of the block.

void free(void *addr_ptr);

· De-allocate the block of memory pointed to by addr_ptr.

calloc() and malloc() are functions which take arguments of type size_t. This is an unsigned integer returned by the sizeof() function which is the size (in bytes) of a data type. Thus size_of(int) would return 4 since an integer normally occupies 4 bytes of memory. Also calloc() and malloc() return a void* data type. This is a pointer which can be cast to any other type of object pointer. Thus calloc() and malloc() return a pointer to the area of memory allocated. This memory can be subsequently de-allocated by a call to free() by using this pointer as the argument to free(). calloc() and malloc() perform similar tasks. calloc() requires the number of storage elements and the amount of memory allocated per element whilst malloc() requires the total amount of memory to be allocated. The other difference is that calloc() initializes the allocated memory to zero.

The program below gives an example of dynamically allocating and de-allocating memory for an array.

Following the call to malloc(), an array is created which is pointed to and can be accessed through the pointer ptr_array as shown in the diagram. Note that the return variable from malloc() has to be cast to the correct type.

The next example shows how a 2-d array can be allocated. This makes use of the pointer-to-a-pointer idea which we met earlier. Essentially, we allocate memory for the 1-d column array of pointers and then allocate memory for each 1-d row array.

The above program then has a 2-d array matrix which is dynamically allocated. Note again that the return variable from malloc() has to be cast to the correct type.

As can be seen from the program, the main advantage with this approach over and above allocating the memory automatically is that the size of the array is determined at run-time. In this simple example, the matrix size depends on user inputted values. In contrast, using declaring the matrix as an automatic variable such as int matrix[4][5] fixes the upper limit of the size of the matrix which could be inconvenient or wasteful of memory.

We could adopt a more procedural style for allocating and de-allocating memory for arrays. The program below contains two functions – allocate() and de-allocate() which handle the memory management for a 2d array. Note how allocate() returns an int** type which points to the allocated 2d array.

Pitfalls in dynamic memory allocation

There are 2 main pitfalls in dynamic memory allocation which cause run-time errors in programs which are sometimes difficult to trace.

· Un-referenced memory (memory ‘leaks’).

· Dangling pointers

Example 1. Un-referenced memory.

This occurs when a pointer, initially pointing at some memory location, is re-assigned and that memory location is now not referenced and hence can never again be accessed. The program segment below shows how easily this can occur.

This program segment creates an un-referenced segment of memory corresponding to 5 integers.

On an embedded system, for example, which relies on a relatively small amount of on-chip memory, if such a piece of code was repeatedly executed, then the whole system could crash as the program would eventually run out of memory.

Example 2 – dangling pointers.

In this case, the memory referenced by a pointer is de-allocated but the program still attempts to access the memory through the pointer.

In this case function f() de-allocates the memory which is later referenced.

Exercises

1. What is the output of the following program segment :

2. Write a program which takes two 4-element integer arrays a[4] and b[4] and concatenates them into an 8-element array c[8]. The first 4 elements of c[8] should be a[4] and the last 4 elements should be b[4].

3. For the outline program below, write the function swap() which swaps the value of the inputted integers.

Sample program output

Input two integers : 10 15

v1 =10 v2=15

v1 =15 v2=10

4. Write a matrix_multiply() function which takes 2 2d arrays pointers as arguments along with the array dimensions. Assume that memory for the input arrays has already been allocated but the function has to handle the memory allocation for the output array. The function should also check for compatibility of the array dimensions.

EEM1E2. Advanced C Programming and Algorithmic Problem Solving

int number=10;

int* p_number=&number;

(*p_number)++;		/* Increment number */

int* p_number

int number

#include <stdio.h>

int main(void)

{

int number=10;

int* p_number=&number;

printf(“%d %d \n”, number,p_number);

(*p_number)++;		/* Increment number */

p_number++;		/* Increment p_number */

printf(“%d %d \n”, number,p_number);

return 0;

}

#include <stdio.h>

int main(void)

{

char c=’Q’;

char* p_c=&c;

printf(“%c %d \n”, c, p_c);

p_c=’Z’;		/ Re-assign character */

printf(“%c %d \n”, c, p_c);

return 0;

}

float x[5];		/* An array of 5 floats */

float* x

x[0] x[1] x[2] x[3] x[4]

int count=10;

int* temp=0;

int sum=0;

temp=&count;

*temp=20;

temp=∑

*temp=count;

printf(“count = %d, temp=%d, sum=%d \n”, count, temp, sum);

int main(void)

{

int x[5]={0,1,2,3,4};

int* left=x;

int* right=x+4;

while (left<right)

{

		int temp=*left;

		*left++=*right;

		*right--=temp;

}

	return 0;

}

x[0] x[1] x[2] x[3] x[4]

right

left

#include <stdio.h>

int main(void)

{

int x[5]={0,1,2,3,4};

int* xp=x;

	for (int i=0; i<5; i++)

	{

		printf(“x[%d]= %d \n”,i,*xp);

		xp++;

	}

	return 0;

}

#include <stdio.h>

int main(void)

{

	char source[20];

	char dest[20];

	char* p_s=source;

	char* p_d=dest;

	printf("Input the source string: ");

	scanf("%s",source);

	printf("The source string is %s \n ",source);

	while (*p_s!=’\0’)

	 	*p_d++=*p_s++;

	*p_d=’\0’;

	printf("The destination string is %s \n ",dest);

	return 0;

}

int a[3][5];

a[0]

a[1]

a[2]

#include <stdio.h>

int main(void)

{

int a[][5]={{3,1,6,5,3},{7,2,5,7,1},{8,3,2,6,2}};

int row,col,val;

int* p_row;

for (row=0; row<3; row++)

{

			p_row=a[row]

			for (col=0; col<5; col++)

			{

				val=*(p_row+col);

				printf(“a[%d][%d]=%d \n”,row,col,val);

			}

	}

return 0;

}

	

#include <stdio.h>

int main(void)

{

	int a[][5]={{3,1,6,5,3},{7,2,5,7,1},{8,3,2,6,2}};

	int ele,val;

	int* p=a[0];

	for (ele=0; ele<15; ele++)

	{

	 	val=*p++;

	 	printf("element %d = %d \n",ele,val);

	}

	return 0;

}

a[1]

a[2]

a[0]

int** p_a

#include <stdio.h>

void increment(int n)

{

	n++;

}

int main(void)

{

	int number;

	printf(“Input a number: ”);

	scanf(“%d”,&number);

	

	increment(number);

	printf(“The number now equals %d ”,number);

	return 0;

	

}

#include <stdio.h>

void increment(int* n)

{

	(*n)++;

}

int main(void)

{

	int number;

	printf(“Input a number: ”);

	scanf(“%d”,&number);

	

	increment(&number);

	printf(“The number now equals %d ”,number);

	return 0;

	

}

function increment() on exit

	

2.

int* &number

number=6

1.

int* &number

number=5

reference

main program

	

function increment() on entry

	

main program program

	

#include <stdio.h>

void increment(int* a, int n)

{

 int i;

 for (i=0; i<n; i++)

 	a[i]++;

}

int main(void)

{

int array[]={0,1,2,3,4};

	int i;

 	for (i=0; i<5; i++)

 		printf("array[%d] = %d \n",i,array[i]);

	increment(array,5);

 	for (i=0; i<5; i++)

 		printf("array[%d] = %d \n",i,array[i]);

	return 0;

}

#include <stdio.h>

void swap(….)

{

	.

	.

}

int main(void)

{

	int v1,v2;

	printf(“Input two integers : ”);

	scanf(%d %d”,&v1,&v2);

	printf(“v1=%d v2=%d \n”,v1,v2);

	swap(…)

printf(“v1=%d v2=%d \n”,v1,v2);

return 0;

}

#include <stdio.h>

int main(void)

{

int* ptr_array,i;

int length;

printf(“Enter length of array : ”);

scanf(“%d”,&length);

/* Allocate memory */

ptr_array = (int*)malloc(length*sizeof(int));

for (i=0; i<length; i++)

	ptr_array[i]++;

/* de-allocate memory */

free(ptr_array);

return 0;

}

int * ptr_array

#include <stdio.h>

int main(void)

{

int** matrix;

int nrows,ncols,row,col;

printf(“Enter the number of rows and columns : ”);

scanf(“%d %d”,&nrows,&ncols);

/* Allocate memory for the pointer array*/

matrix= (int**)(malloc(nrows*sizeof(int*)));

/* Allocate each row of the matrix */

for (row=0; row<nrows; row++)

	matrix[row]=(int*)(malloc(ncols*sizeof(int)));

/* Access the matrix */

for (row=0; row<nrows; row++)

	for (col=0; col<ncols; col++)

		matrix[row][col]=10;

return 0;

}

int** matrix

int** allocate(int nrows, int ncols)

{

	int row;

	/* Allocate memory for the pointer array*/

matrix= (int**)(malloc(nrows*sizeof(int*)));

/* Allocate each row of the matrix */

for (row=0; row<nrows; row++)

		matrix[row]=(int*)(malloc(ncols*sizeof(int)));

	return matrix

}

void de_allocate(int** matrix, int nrows)

{

	int row;

	/* De-allocate each row of the matrix */

for (row=0; row<nrows; row++)

		free(matrix[row]);

/* De-allocate memory for the pointer array*/

	free(matrix);

}

int main(void)

{

int** matrix;

int nrows, ncols, row, col;

printf(“Enter the number of rows and columns : ”);

scanf(“%d %d”,&nrows,&ncols);

/* Allocate the matrix the matrix */

matrix=allocate(nrows,ncols);

/* Access the matrix */

for (row=0; row<nrows; row++)

	for (col=0; col<ncols; col++)

		matrix[row][col]=10;

/* de-allocate the matrix */

de_allocate(matrix);

return 0;

}

int* p;

int q=2;

p=(int*)(malloc(5*sizeof(int)));

p=&q;		/*creates unreferenced memory */

p

q

Un-referenced

void f(int* x)

{

	…

	free(x);

}

int main(void)

{

	int i;

	int* iarray=(int*)(malloc(5*sizeof(int)));

	f(iarray);	/* creates dangling pointer */	

	for (i=0; i<5; i++)

	 	iarray[i]=0;	/* disaster! */

return 0;

}

