EEM1E2 Lecture 5

Lecture 5. Recursion

In this lecture we will cover :

· Basic ideas about recursion

· Simple numerical recursive algorithms

· Recursion versus iteration

· Example 1 – the Tower of Hanoi puzzle

· Example 2 – connected components

1. Basic ideas about recursion

In order to understand recursion you have to understand recursion ……
- unattributed joke!

In many problems in engineering and computer science it is beneficial to think of a problem recursively as opposed to iteratively. In other words, instead of trying to solve the problem through the repeated calling of a function from a main program, it may be more natural for the problem to be solved by a recursive function call in which the function repeatedly calls itself until some condition is met. For example, as we shall see, many mathematical functions are defined recursively and so a natural way to evaluate them would be through a recursive function. Also as we shall see in the next lecture, recursive data structures called trees can easily be created in C and algorithms that operate on these trees are naturally recursive. Finally, many important problems in the searching and sorting of data are again recursive and lend themselves to recursive algorithms.

So what is a recursive function? The example skeleton code below shows a recursive function rec_fun() which continually calls itself.

Obviously, the function cannot go on calling itself indefinitely as the original calling program would then never terminate. Thus, within a recursive function, an evaluation is made on some condition that, if true, allows the function to return without a recursive call to itself. This is known as the recursion unwinding. Typically, this return condition is based on the argument passed into the recursive function. Some simple examples should make things clearer.

2. Some simple numerical recursive algorithms

The most common example of a recursive function is a function to evaluate the factorial of an integer. Thus given an integer n, its factorial
[image: image1.wmf]!

n

, is defined as :

[image: image2.wmf]1

)....

3

)(

2

)(

1

(

!

-

-

-

=

n

n

n

n

n

Thus
[image: image3.wmf]120

1

2

3

4

5

!

5

=

´

´

´

´

=

. Obviously, a function could easily be written which evaluates the factorial iteratively. However, it is easy to see that there is a simple recursive definition of the factorial :

[image: image4.wmf])!

1

(

!

-

=

n

n

n

Hence, to evaluate
[image: image5.wmf]!

n

, we simply evaluate
[image: image6.wmf])!

1

(

-

n

 and multiply it by
[image: image7.wmf]n

. The stopping condition is when
[image: image8.wmf]1

=

n

 in which case the factorial of 1 is 1. We can now easily write a function factorial() using this recursive approach as follows.

The diagram below shows exactly how the factorial is evaluated for
[image: image9.wmf]4

=

n

 with arguments passed down into deeper and deeper levels of recursion and return values passed back as the recursion unwinds.

As a second, slightly more complicated example of a numerical recursive algorithm, the Fibonacci sequence of number is defined recursively as follows :

[image: image10.wmf]1

)

2

(

)

1

(

)

(

1

)

1

(

)

0

(

>

-

+

-

=

=

=

n

n

fib

n

fib

n

fib

fib

fib

The first few number in the sequence are 1,1,2,3,5,8,13,21,……

The function fib() which computes this sequence of numbers is as follows.

This function contains two recursive calls to itself but is a straightforward encoding of the definition of the sequence. The diagram below shows the recursive calls and return values for
[image: image11.wmf]3

=

n

.

3. Recursion versus iteration

In theory, any recursive function can be transformed into a non-recursive iterative function. As an example, we can re-write the function to compute the Fibonnaci sequence non-recursively. The following is a non-recursive function for computing the nth Fibonacci number.

As can be seen, the function is more complex than the extremely simple recursive implementation. Unfortunately, in spite of this, the non-recursive function is more efficient than the recursive function since they avoid the overhead of repeated function calls and the passing of function arguments and return values. Also, in the case of the Fibonacci numbers, in calculating fib(3), fib(1) is called twice as can easily be verified. In calculating fib(4), fib(2) is called twice, fib(1) three times and fib(0) twice. This duplication of calculation increases drastically for increasing n and results in prohibitive execution times for the recursive function.

The moral of the above paragraph is that, if a non-recursive implementation is feasible and its complexity manageable, then it should be used. However, for some problems, a non-recursive solution is so complex that we have to live with the inefficiencies of a recursive solution.

4. Example 1 – the Tower of Hanoi puzzle

In these next 2 sections we will look at 2 problems which are more abstract than the simple numerical problems but that require a recursive solution. The first is the famous Tower of Hanoi problem, originally called the Tower of Brahma puzzle and is attributed to the following legend.

“In the great temple at Benares, beneath the dome that marks the center of the world, rests a brass plate in which are fixed diamond needles, each a cubit high and as thick as the body of a bee. On one of these needles, at the creation, God placed sixty-four disks of pure gold, the largest resting on the brass plate and the others getting smaller and smaller up to the top one. This is the Tower of Brahma. Day and night, unceasingly, the priests transfer the disks from one diamond needle to another according to the fixed and immutable laws of Brahma, which require that the priest on duty must not move more than one disk at a time, and that he must place the disk on a needle so that there is no smaller disk below it. When all the sixty-four disks shall have been thus transferred from the needle on which at the creation God placed them to one of the other needles, the tower and the priests alike will crumble into dust, and with a thunderclap the world will vanish.”

We start with a number of disks on needle 1 and the object is to move all of the disks to needle 3 as shown in the diagram, and according to the following 2 simple rules :

1. Only one disk can be moved at a time

2. A larger disk cannot be placed on top of a smaller disk

We have to write a computer program which works out the sequence of moves.

Suppose we have n disks and we wish to move them from needle 1 to needle 3 using needle 2 as a spare needle. We need a function, move(n,1,2,3), to work out the sequence of moves. If n is either 1 or 2, the moves sequences are fairly obvious as shown in the diagrams below.

Clearly, as n increases, the sequence of moves gets more and more complex and it would be difficult to follow this strategy further. (For n=3, there are 7 steps for example). We need to step back from the problem and try to think about it in a more ‘recursive’ way. It turns out that the problem is remarkably simple if we think in this fashion. Following the diagram below, the function move(n,1,2,3) can be split into the following 3 recursive steps.

Its now fairly straightforward to write a program that prints out the sequence of moves for any input value n as shown below.

The program produces the following output for n=3.

Move top disk from 1 to 3

Move top disk from 1 to 2

Move top disk from 3 to 2

Move top disk from 1 to 3

Move top disk from 2 to 1

Move top disk from 2 to 3

Move top disk from 1 to 3

It can easily be verified that these are the correct moves.

In the case of the original Tower of Brahma puzzle with 64 disks, even at 1000000 moves per second (beyond even the most energetic of priests), it would take 584,542 years to complete so we can conclude that the end of the world is not imminent!

We can see from this example that only a recursive solution to this problem is feasible and the non-recursive solution (although possible) is extremely complex.

5. Example 2 – connected components

In this example, we look at a problem with a number of practical applications the main one being in the area of image processing. The problem is to take a bitmap image (one consisting of 2 colours, black and white) and find the number of connected components in that image. A connected component is a group of connected points (or pixels) of one colour in the image and, assuming that we label object pixels black, each connected component corresponds to an object. The figure below shows a number of examples of connected components.

As can be seen, this image clearly consists of 3 black connected components each corresponding to an individual object. An obvious question is how we define the term connected. We have to imagine that the image consists of a 2-dimensional array of pixels and that, in a bitmap image, each pixel can have 2 colours, black and white. Two pixels are connected if they are neighbours in our 2-dimensional grid. We can, in fact, define 2 sorts of connectivity – 4-connectivity and 8-connectivity. As shown in the diagram below, a pixel is 4-connected to its immediate 4 horizontal and vertical neighbours whereas it is 8-connected to both its 4 horizontal and vertical neighbours and its 4 diagonal neighbours. We than thus define both 4-connected objects and 8-connected objects. For the purposes of this programming example, we will only consider 8-connectivity. It is very easy to edit the program to only consider 4-connectivity.

As well as having applications in image processing and computer graphics, this problem has applications in network analysis and VLSI circuit layout. In both cases, it is sometimes important to examine the connectivity of 2 points in the network or circuit or, in other words, whether a pair of points belong to the same connected component.

In order to find the number of connected components in an image, it might be thought that a simple strategy would involve scanning the image line by line and simply assuming that a scanned pixel belongs to the same connected component as a previously scanned neighbour. However, this strategy is not guaranteed to work for all shapes of object. For example, in the figure below, it would work OK for the circular object but for the thin ‘U’ shaped object, connected pixels only ‘connect up’ as the ‘U’ is scanned around the bottom. We thus have to be a bit cleverer in our design of the algorithm in order for it to work in all cases.

A recursive algorithm works by scanning the image, from the top left hand corner row by row until it comes across an object pixel (which we assume to be coloured black). It then begins its recursive visitation algorithm where it (recursively) visits all of the 8-neighbouring pixels of the current pixel it is visiting. As it visits each pixel, it ‘eats’ that pixel so that it doesn’t re-visit that pixel.

The diagram below illustrates this recursive pixel-visiting algorithm where, a pixel visits each of the 8-neighbours which are object pixels and have yet to be visited.

The recursive visiting continues until no more object pixels can be visited since they have all been ‘eaten’. This then completes the visiting of one connected component. The image scanning then continues from the pixel after the one from which the connected component visiting began and the same process is applied to the next connected component. A total is kept of all the connected components. Once the last pixel in the image is scanned, the connected component counting algorithm is complete. The figure below gives the pseudo-code for the recursive visiting algorithm and the main program.

Note that in the recursive visiting function, it is not necessary to keep a track on which object pixels have yet to be visited since, once visited, they are coloured white and hence can’t be re-visited.

The C program below shows the function visit() which is a direct translation into C of the pseudo-code.

The main calling program which determines the number of connected components is shown below. The bitmap image is represented by a 2-dimensional array declared and initialized globally. Object pixels are represented by 1 and background pixels by 0. It can be seen from the initialization that there are 5 connected components if we assume 8-connectivity. If only 4-connectivity is assumed then there would be 6 components as the top left component is 8-connected but not 4-connected.

There are a number of variations on the theme of connected component counting. For example, the population of each component can be computed or each component can be given a different greylevel or colour. Each of these involves only simple modifications to the visit() function.

Exercises

1. Write recursive functions for calculating values of the following polynomials for any input value x.

Chebyshev polynomial :

[image: image12.wmf]1

)

(

)

(

2

1

2

0

1

)

(

2

1

>

-

=

=

=

=

=

-

-

 n

x

C

x

xC

n

n

x

C

n

n

n

Hermite polynomial :

[image: image13.wmf]1

)

(

)

1

(

2

)

(

2

1

2

0

1

)

(

2

1

>

-

-

=

=

=

=

=

-

-

 n

x

H

n

x

xH

n

x

n

x

H

n

n

n

2. Modify the Tower of Hanoi program so that the program output looks as follows (for n=3) :

Move 1- top disk from 1 to 3

Move 2- top disk from 1 to 2

Move 3- top disk from 3 to 2

Move 4- top disk from 1 to 3

Move 5- top disk from 2 to 1

Move 6- top disk from 2 to 3

Move 7- top disk from 1 to 3

7 moves in total

This is trickier than you might think!

3. Modify the connected components algorithm so that it computes, and prints out, the population (in pixels) of each connected component.

EEM1E2. Advanced C Programming and Algorithmic Problem Solving

 2

 2

 2

 1

3

2

1

 1

 1

3

2

1

 1

 1

3

2

1

move(1,1,2,3) – move disk 1 from needle 1 to needle 3

int fib(int n)

{

		int i, result, n_minus1=1, n_minus2=1;

		if (n==0 || n==1)

			return 1;

		for (i=2; i<=n; i+)

		{

			result = n_minus1+n_minus2;

			n_minus2=n_minus1;

			n_minus1=result;

		}

		return result;

}

3

2

1

fib(1)=1

n=1

fib(1)=1

fib(0)=1

n=0

fib(0)=1

fib(1)=1

n=1

fib(1)=1

fib(2)=2

n=2

fib(2)=fib(1)+fib(0)

fib(3)=3

n=3

fib(3)=fib(2)+fib(1)

int fib (int n)

{

	if (n<=1)

		return 1;

	else

		return fib(n-1)+fib(n-2);

}

factorial(1)=1

factorial(1)=1

n=1

factorial(2)=2*factorial(1)

factorial(2)=2

n=2

factorial(3)=6

n=3

factorial(3)=3*factorial(2)

factorial(4)=24

n=4

factorial(4)=4*factorial(3)

int factorial(int n)

{

	if (n==1)

		return 1;

	else

		return n*factorial(n-1);

}

int rec_fun(…)

{

	/* evaluate return condition */

	.

	

	if (return_condition)

		return val;

	else

return rec_fun(…);

}

3

2

1

 2

 1

3

2

1

move(2,1,2,3) – 	move disk 2 from needle 1 to needle 2

 	move disk 1 from needle 1 to needle 3

			move disk 2 from needle 2 to needle 3

move(n,1,2,3) – 	move(n-1,1,3,2) 				move disk 1 from needle 1 to needle 3

			move(n-1,2,1,3)

#include<stdio.h>

void move(int n, int needle1, int needle2, int needle3)

{

	if (n==1)

		printf("Move top disk from %d to %d \n",needle1,needle3);

	else

	{

		move(n-1,needle1,needle3,needle2);

		printf("Move top disk from %d to %d \n",needle1,needle3);

		move(n-1,needle2,needle1,needle3);

	}

}

int main(void)

{

	int n;

	printf("Input the number of disks : ");

	scanf("%d",&n);

	move(n,1,2,3);

	return 0;

}

4-connected neighbours

8-connected neighbours

visit pixel(i,j)

/* Visit connected component starting from pixel(r,c) */

visit(r,c)

	set pixel(r,c) to background pixel

	for each 8-neighbour (nr,nc) of (r,c)

	if (pixel(nr,nc) is an object pixel)

			visit(nr,nc)

/* Count connected components */

begin main program

read/initialize bit map image

connected_component_count=0

for r =1 to number of image rows

	for c = 1 to number of image columns

		if (pixel(r,c) is an object pixel)

			connected_component_count++

			visit(r,c)

		

output connected_component_count	

void visit(int x, int y)

{

	int x1,xx,y1,yy;

	image[x][y]=0;

	for (xx=-1; xx<=1; xx++)

		for (yy=-1; yy<=1; yy++)

		{

			x1=x+xx;

			y1=y+yy;

			if ((x1>=0)&&(x1<IMAGE_WIDTH))

				if ((y1>=0)&&(y1<IMAGE_HEIGHT))

					if (image[x1][y1]==1)

						visit(x1,y1);

		}

}

#include <stdio.h>

#define IMAGE_HEIGHT 16

#define IMAGE_WIDTH 16

int image[][IMAGE_HEIGHT]={	{0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0},

 				{0,0,1,1,1,0,0,0,0,0,1,0,0,1,0,0},

 				{0,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0},

 				{0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0},

 				{0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0},

 				{0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0},

 				{0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0},

 				{0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0},

 				{0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0},

 				{0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0},

 				{0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0},

 				{0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0},

 				{0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0},

 				{0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,1},

 				{0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1},

 				{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1}};

int main(void)

{

int x,y;

	int num_components=0;

	

	for (x=0; x<IMAGE_WIDTH; x++)

		for (y=0; y<IMAGE_HEIGHT; y++)

			if (image[x][y]==1)

			{

				visit(x,y);

				num_components++;

			}

	printf("There are %d connected components \n",num_components);

	return 0;

}

n=1

n=2

_1038737333.unknown

_1038737401.unknown

_1038738609.unknown

_1038739284.unknown

_1038739473.unknown

_1038739122.unknown

_1038737903.unknown

_1038737372.unknown

_1038737392.unknown

_1038737343.unknown

_1038735630.unknown

_1038737213.unknown

_1038735566.unknown

