04 16066/EE4E

Object-Oriented Programming

Briefing Notes

In these briefing notes, we will revise the following C-programming concepts :

· Pointers

- basics

- array indexing

- passing function arguments by value and by reference

- dynamic memory allocation

· User defined data types

- use of struct

- pointers to structures

- structures and functions

- self-referential structures
Pointers - the basics

A pointer is an object which refers to another object. It typically consists of a 32-bit machine address.

Simple C-code example showing use of * and & operators :

int* p;

/* pointer definition */

int i=3;

/* variable declaration */

p=&i;

/* pointer assignment */

Schematically represent as :
 p i

 3

After executing :

int j=4;

p=&j;

 p j

 4

 i

 3

Operator * - indirection operator :

p - the pointer (typically a 32-bit address).

*p - what p points to (can be anything).

Operator & - address of operator :

&i - the address of i. Can assign to a pointer.

&(*p)=p (p is essentially the inverse of *.
Use of pointers - array indexing

Pointers and arrays are intimately related :

float x[5];

/* An array of 5 floats */

Variable x - type array of float. However, it is usually used as if it were of type float* (pointer to a float) and pointing to x[0]:

 float* x x[0] x[1] x[2] x[3] x[4]

x[0] - same as *x

x[1] - same as *(x+1)

x[2] - same as *(x+2)

.

.

x[i] - same as *(x+i)

Example. Reversing the elements of an array.

float x[5]={0,1,2,3,4};

float* left=&x[0];

float* right=&x[4];

while (left<right)

{

float temp=*left;

*left++=*right;

*right--=temp;

}

 float* x x[0] x[1] x[2] x[3] x[4]

 left right

Function arguments - passing by value and by reference

Function definition :

void f(int x, float y, float* z)

{

x=10;

y=20.0;

z[0]=30.0

}

x, y and z are formal arguments to the function.

Function call :

int i=1;

float j=2.0;

float k[]={3.0,4.0,5.0};

f(i,j,k);

i, j and k are actual arguments passed to function f.

Arguments i and j are passed by value.

Argument k is passed by reference (ie through a pointer.)

The difference is in how formal arguments x, y and z are created from the actual function arguments i, j and k.

In calling program

 i j k[0] k[1] k[2]

 1 2.0 3.0 4.0 5.0

 copy copy reference

 1 2.0

 x y z

In function f on entry

In calling program

 i j k[0] k[1] k[2]

 1 2.0 30.0 4.0 5.0

 10 20.0

 x y z

In function f on exit

After function f has terminated, only k[0] has been changed.

Arguments passed by value do not change the values in the main program.

Arguments passed by reference change the values in the main program.

Example. Swapping two variables.

void swap(int* i1, int* i2)

{

int temp=*i1;

*i1=*i2;

*i2=temp;

}

main()

{

int c=3;

int d=4;

swap(&c,&d);
/* c=4, d=3 */

}

Actual arguments to swap must be preceded by the ‘&’ operator.

The ‘*’ operator must be used inside the function.
Dynamic memory allocation

Memory management

A variable can be one of 3 types as far as memory management is concerned :

· Static

· Automatic

· Dynamic

Static variables :

· Memory allocated once and not freed until the program terminates.

Automatic variables :

· Memory allocated each time the variable definition is executed and automatically destroyed when the containing block terminates.

Dynamic variables :

· Memory is allocated and de-allocated by the programmer on the free store or heap.

C uses the functions calloc and malloc to allocate memory to dynamic variables and free to release that space :

void *calloc(size_t number_of_elements,

 size_t element_size);

· Allocates a contiguous block of memory.

· Initialises the block to zero.

· Returns the address of the start of the block.

void *malloc(size_t size_of_space);

· Allocates a contiguous block of memory.

· Returns the address of the start of the block.

void free(void *addr_ptr);

· Free block of memory pointed to by addr_ptr.

2 other points :

· size_t - unsigned integer returned by the sizeof function.

· void* - can be converted to any other type of object pointer.

Example. Dynamic 1-D Array.

main()

{

int* ptr_array;

int length;

printf(“Enter length of array : ”);

scanf(“%d”,&length);

ptr_array = malloc(length*sizeof(int));

}

 ptr_array

The memory may be de-allocated by calling :

free(ptr_array);

Pitfalls.

There are 2 main pitfalls in dynamic memory allocation :

· Unreferenced memory (memory ‘leaks’).

· Dangling pointers

Example. Unreferenced memory.

int* p;

int q=2;

p=malloc(5*sizeof(int));

p=&q;

/*creates unreferenced memory */

This program segment creates an unreferenced segment of memory corresponding to 5 integers.

 Unreferenced

 p 2

 q

Example. Dangling pointer.

void f(int* x)

{

…

free(x);

}

main()

{

int i;

int* iarray=malloc(5*sizeof(int));

f(iarray);
/* creates dangling pointer */

for (i=0; i<5; i++)

iarray[i]=0;
/* disaster! */

}

Function f unallocates the memory which is later referenced.
User defined data types - use of struct

C provides the structure identifier struct which allows the programmer to build his own data types.

Example. Complex number data type.

struct complex

{

float real;

float imag;

};

struct complex z1;

struct complex z2;

A type indentifier can be used to improve readability.

typedef struct

{

float real;

float imag;

} complex;

complex z1;

complex z2;

Structures may be accessed with the ‘.’ operator and initialized with {} :

complex z1={2.0,5.0}
/* z1=2+5j */

float mag=sqrt(z1.real*z1.real+z1.imag*z1.imag);
Pointers to structures

Structures can be accessed through pointers in the same way as any of the C built-in types can.

complex z1={2.0,5.0}
/* z1=2+5j */

complex* zp=&z1;
/* pointer to a structure */

float mag=sqrt(zp->real*zp->real+zp->imag*zp->imag);

The ‘->’ operator is used to access elements of the structure instead of ‘.’.

A common pitfall is to declare the pointer but not allocate memory for it :

complex* zp;

zp->real=2.0;

/* Error! No memory allocated */

zp->imag=5.0;

/* Error! No memory allocated */

Can use malloc to allocate memory :

complex* zp=malloc(sizeof(complex));

zp->real=2.0;

/* OK */

zp->imag=5.0;

/* OK */

Structures and functions

We can write functions that take structures as arguments and return structures:

complex add(complex z1, complex z2)

{

complex z;

z.real=z1.real+z2.real;

z.imag=z1.imag+z2.imag;

return(z);

}

Functions that change the arguments must be passed a pointer :

void conjugate(complex* z1)
/* conjugates z1 */

{

z1->imag=(-z1->imag);

}

main()

{

complex z={2,5};
/* z=2+5j */

conjugate(&z);

/* z=2-5j */

}

Functions can return structures or pointers to structures :

Example. Rectangular -> polar co-ordinate conversion.

typedef struct

{

float x, y;

} rectangular;

typedef struct

{

float radius, theta;

} polar;

polar r_to_p(rectangular coord)

{

polar p;

p.radius=sqrt(coord.x*coord.x+coord.y*coord.y);

p.theta=atan2(coord.y, coord.x);

return (p);

}

main()

{

rectangular c1={1.0,2.0};

polar p1=r_to_p(c1);

}

Returning the structure involves a complete copy of the structure on exit from the function. For large structures, it may be better to return a pointer :

big* f()

{

big* b=malloc(sizeof(big));

/* Initialise big */

return b;

/* Only pointer copied */

}

main()

{

big* b=f();

}

