ELECTRONIC, ELECTRICAL AND COMPUTER ENGINEERING

EE4E 2003/2004

Object Oriented Programming Using C++

Assessed Programming Assignment

Dr M. Spann

1. Aims and Objectives

In the first part of this programming exercise, you will be asked to design a C++ class suitable for representing a standard deck of playing cards and methods for performing fairly simple operations on the deck such as shuffling and dealing the deck. In the second part of the exercise, you will be asked to write a C++ class which simulates the playing of a simple card game. Obviously this will make extensive use of your deck of cards class.

The ultimate aim of the exercise is to design and implement several C++ classes and consider issues of encapsulation which are fundamental to Object Orientation and extendibility of your application.

2. Preparatory Work

Revise the course notes on C++ classes and what is meant by private and public access to class members.

Consider how you might efficiently represent 52 playing cards arranged as 4 suits of 13 cards each as well as a simple algorithm to simulate a random shuffling of the deck.

Consider how you would represent sub-groups of cards. For example, a hand of cards in a card game as well as a run of cards of the same suit within a hand. Note that the order of the cards within the deck is important but it isn’t for the cards within an individual hand.

3. Lab Work
3.1 A DeckOfCards class

Design and implement a DeckOfCards class to represent a standard set of playing cards.

Implement methods cut(), deal() and shuffle() which cut the pack at some random location, deal a set of hands of cards to a given number of players and shuffle the pack of cards. You may wish to consider a completely random shuffle or any other shuffling algorithm you care to implement. Obviously, its up to you to consider suitable parameters and return types of these methods.

Implement a class DeckOfCardsTest which has a main() method which tests your DeckOfCards class and its methods. Devise a suitable means of testing using simple console based I/O.

3.2 Simulating a simplified game of Gin Rummy
The rules for a simplified game of gin rummy are as follows.

The game is for a maximum of 4 players. Each player is dealt 7 cards from the pack. The top card from the remaining deck is then drawn and placed face up as the first card in the ‘discard pile’. Each player takes it in turns and can either draw the top card in the remaining deck, which is face down, or the top card from the discard pile which is face up. The objective is to arrange your 7 cards into one group of 4 and one group of 3 where a group can either be 3 or 4 cards with the same face values (eg. three 7’s or four queens) or a run of cards of the same suit (eg 2,3,4 and 5 of spades). The first player who gets to this stage has won the game. Obviously the key to the game is to judiciously change a card in your hand with the one drawn from the pack or the discard pile. Also other players can see the cards you take from the discard pile which may give them a clue as to other cards that you may need. You may or may not exchange the drawn card with one from your hand depending on the suitability of the card drawn. In either case, one card is discarded and put on the discard pile (face up for all the other players to see) so each player is always holding 7 cards. If all of the cards from the deck have been drawn and a player has yet to win, the discard pile is re-shuffled and placed face down and the game continues.

Design and implement a class PlayGinRummy which simulates the playing of Gin Rummy for up to 4 players. The computer makes the decisions as to whether to keep or discard each card drawn from the deck. This is not to be done interactively by the user.

You will make extensive use of your DeckOfCards class. Also you may wish to consider other classes. For example, you may want to have a Player class and each Player object will hold a hand of cards. Another important issue will be the algorithm you choose to determine whether to exchange a card with the one drawn from the pack. Clearly this may depend on the cards in the discarded pile which each player can view.

Use console-based I/O (not graphically-based) to show a game simulation through to conclusion starting from a randomly shuffled deck. The I/O generated should be clear but simple with just enough text generated to show what is happening during the game.

4. Assessment

The assessment will be on the basis a report containing descriptions of the design and implementation of your program including a description of each class used and its relationship with the other classes in the application. Also, include a listing of your code with the report. Also, submit with your report, your .exe file on a floppy disc along with any instructions required to run the program.

EE4E: C++ Programming

Assessed Assignment

	Report Presentation

Structure, clarity and presentation of report. Contents page, page numbering, presence of correct front cover, labelling of diagrams.

	 EQ \X() / 15

	Program implementation

Quality of coding, comments, algorithms used, data structures, input/output, exceptions

	 EQ \X() / 30

	Program Design

Class structure within overall application, discussion of object oriented issues, presentation of design

	 EQ \X() / 30

	Testing

Overall testing strategy, expected/actual results given, exceptional conditions tested

	 EQ \X() / 15

	Conclusions

Success/failure of assignment. Suggestions about possible bugs, improvements/extensions to the application

	 EQ \X() / 10

	Total

	 EQ \X() /100

Comments

_992958103.doc
�

�

