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1. Aims and Objectives 

This programming exercise is concerned with an investigation into and applications of self-organising feature mapping algorithms. For a fuller discussion of this subject you are directed to Simon Haykin’s book Neural Networks, chapter 10. 

Self-organising feature maps (SOFM’s) are a special class of neural networks that are able to learn about the distribution of the input vectors and adapt their behaviour accordingly.   Essentially, SOFM’s use competitive learning whereby the output neurons in the map compete amongst themselves to be activated when a specific input pattern is presented to the map. Also the adaptation of the synaptic weights between the input and output neurons is local in the sense that a small neighbourhood of output neurons surrounding the ‘winning’ neuron adjust their synaptic weights. This behaviour is equivalent to having  local excitatory lateral connections between output neurons.   The result of this local adaptation is that the output neurons become selectively tuned to particular input patterns with spatially neighbouring output neurons being tuned to closely related input patterns. Thus the coordinates of the output neurons correspond to particular features of the input patterns. Appendix I gives a detailed explanation of the topology and adaptation of an SOFM for a two-dimensional lattice.

There is an alternative (and more useful in terms of real applications) interpretation of SOFM’s as vector quantisers. Essentially vector quantisation takes a large set of input vectors from some input distribution and clusters them (usually using a training set) such that each cluster is represented by a single vector (usually the centroid vector of each cluster).   The mapping from an input vector to a cluster is performed by a codebook such that an input vector can be represented by an index into this codebook resulting in significant data compression.

The programming assignment is divided up into 2 parts. The first is to develop a C++ class enabling an SOFM of arbitrary size (and maybe even topology) to be created and activated on input test data. The second part is to demonstrate the learning capabilities of your SOFM firstly on a simple input space of two-component vectors and then on an input space of vectors comprising blocks of image pixels with the application here being vector quantisation and image compression. Your design should be flexible enough to encompass a range of lattice sizes and input vector dimensions. 

2. Practical Work

2.1  A SOFM class

Design and implement a SOFM class to represent a self-organising feature map. 

Your design should be flexible and re-useable so that, for example, you can easily adapt it to the creation of SOFM’s with either one, two (or higher) dimensional output lattices, different learning algorithms and/or different dimensional input vector  spaces.

2.2 Sampling a uniform 2D distribution of vectors

Test your program by presenting two-dimensional vectors 
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 are uniformly distributed random variables in the range 
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. Use a reasonably small output lattice (say 10x10) and as the network trains, graphically plot the positions of the weight vectors 
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 and draw lines between adjacent weight vectors in the lattice. The self-organising ability of the SOFM should be apparent from this simple test. You are free to use any graphical display of your choosing in order to demonstrate the performance of the SOFM on this simple data.

2.3 Image vector quantisation

Image vector quantisation is a technique for compressing images by grouping the image pixels into block (4x4 pixels) and representing the block as a vector. A codebook is generated by a learning algorithm that consists of a mapping between the input vector and an output codeword. The SOFM implements this mapping in a simple way, namely that the output codewords following convergence of the SOFM are the weight vectors of the SOFM. Thus the SOFM behaves as a crude vector quantiser. Note that practical systems using this technique usually include a post processing step to fine tune the output codewords to yield better performance. The whole process for implementing image vector quantisation is shown in the figure below.  
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A given input vector maps to a neuron 
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 in the SOFM where 
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 is effectively the index into the codebook. The output codeword 
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 is simply the weight 
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 from the input 
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 to neuron 
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after convergence. Use your SOFM class to demonstrate a simple image vector quantiser. You are free to use any image processing libraries to implement image I/O that you like or you can take the data straight from image files (for example PGM, PPM or TIFF format) and use a simple imaging program (such as PhotoShop) to display the image pixel data.
4. Assessment

The assessment will be on the basis of a report containing descriptions of the design and implementation of your program including a description of your SOFM class and a program listing.

You are not expected to include formal design descriptions (for example UML) but can if you want to. This is mainly an exercise in C++ programming rather than a full blown exercise in Object Oriented Design. However, I will be looking for flexibility and re-useability in your class design such that it can be used in different applications (for example 2D (image) or 1D (speech, ECG etc) data). 

I will also be looking for some discussion in your report about how you evaluated your program and how the SOFM performs. Graphical screenshots are also useful in giving me some idea of how your program performs and, in the case of the vector quantisation application, there are standard methods of assessing image compression performance. Conclude your report with a critical evaluation of the program. Was the overall project a success and if so why? If not, why not?

Appendix II gives the assessment pro-forma I will be using so obviously paying full attention to the criteria illustrated here will be of benefit to you.

APPENDIX I

A Kohonen SOFM consists of an input neuron attached to a lattice (usually two dimensional) of output neurons.  The input is connected to each output neuron and for each output neuron 
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 we can define a synaptic weight vector 
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 where 
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is the dimensionality of the input vector. The input vector, representing the set of input signals is denoted by 
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 and is assumed to be sampled from some random distribution. 
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Inputs drawn from the input pattern are repeatedly presented to the SOFM.  The synaptic weights 
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 are initialized to random (small) values with the restriction that they are all different for 
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is the number of output neurons. The learning algorithm then proceeds as follows :

Step 1: Set 
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. Draw a sample 
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from the input distribution

Step 2: Find the best-matching neuron 
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in the output layer where 
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 is defined as the synaptic weight vector closest to the input vector :
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Step 3: Update the synaptic weight vectors :
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is the neighbourhood function centred around the winning neuron 
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. Both of these are varied dynamically during learning for best results. As should be obvious from the above equation, the matching output neuron has its synaptic weight vector moved towards the input vector (in other words, 
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decreases). When learning is complete, the distribution of weight vectors is an approximation to the input vector distribution. 

Parameter selection within an SOFM 

This is crucial for optimum performance and involves selecting the learning rate 
[image: image29.wmf])

(

n

h

 and the neighbourhood function 
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 which are both functions of the iteration count. Typically during the first 1000 iterations or so, 
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 should be close to unity and in this self-ordering phase, the ordering of the weight vectors takes place. Subsequently, during the convergence phase, 
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 should be slowly decreased to zero to fine tune the position of the weight vectors. Typically 
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 should initially encompass the whole output lattice and gradually shrinks with increasing values of 
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. Again during the self-organising phase, 
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 should shrink linearly with 
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to a small value encompassing no more than a few output neurons. During the convergence phase, 
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should only contain the nearest 4 neighbours of the winning neuron. 
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	User manual

Usefulness, clarity
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	Design

Class, object diagrams

Data structures

Discussion of design issues inc. object oriented design and extendibility
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	Coding and implementation 

File organisation

Coding (module length, exception handling, code layout/readability, user interface and comments)

Correct operation (specification fulfilled, extended features)
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	Testing

Discussion and appropriateness of testing procedure
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