

This lecture will provide a detailed revision of the C++ programming language.

Topics we will cover will be as follows :

· Historical notes

· C and C++

· Objects and Classes

· Pointers to objects

· Pointers and references

· Inheritance

· Polymorphism - virtual functions

· Operator Overloading

· Templates

C++ was developed at the Bell laboratories in the mid 1980's.

C is retained as a sub-set of C++.

C++ was designed to support :

· Procedural programming

· Modular programming

· Data abstraction

· Object-oriented programming

The first two programming paradigms are also supported by C.

C++ supports all the fundamental data types of C as well as all of the control constructs of C :

char, short, int, long, float, double, long double

for { }

if () { } else if () { } else { }

do { } while ()

while () { }

switch () { case }

Function definition (ANSI standard - standard C definition NOT supported) is the same :

A complete C++ program :

#include <iostream.h>

float func(int a,int b)

{

return a*b;

}

void main()

{

cout << "Printing the 7 times table \n";

for (int i=1; i<=12; i++)

cout << i << " * 7 = " << func(i,7) << "\n";

}

Note the use of the stream i/o operator and the declaration

of i.

C++ defines the class data structure which allows us to create and manipulate objects.

Example

We can defined a class Point to store the current position of a point (maybe for a computer graphics application) :

class Point{

private:

int x,y;

public:

Point(int,int);

void shift(int,int);

int getx(){return x;}

int gety(){return y;}

};

Notes
1. x and y are private members of Point - they can only be accessed by the public member functions of the class (their values are returned by the access functions getx() and gety()).

2. All public member functions declared must be implemented by the class designer :

Point::shift(int x0,int y0)

{

x+=x0;

y+=y0;

}

3. The public member function Point(int,int) is a constructor

which allows us to initialize the class :

Point::Point(int x0, int y0)

{

x=x0;

y=y0;

}

Note the use of the scope resolution operator ::

A more succint definition is possible :

Point::Point(int x0, int y0) : x(x0),y(y0) { }

We can now declare and initialize variables (objects) of type Point :

Point aPoint(5,3);

cout << "x,y pos. <<aPoint.getx()<<aPoint.gety();

aPoint.shift(6,5);

cout << "new x,y pos. "<<aPoint.getx()<< aPoint.gety();

Classes - Implementation, Interface

The interface to a class is through the public member function.

The implementation of a class is defined by the private members.

[image: image1.wmf]Point

private :

int x,y;

public :

Point() {...}

shift() {...}

getx() {return x;}

gety() {return y;}

Implementation

Interface

The implementation might change but the interface must stay the same :

[image: image2.wmf]Point

private :

public :

Point() {...}

shift() {...}

getx() {return r*cos(theta);}

gety() {return r*sin(theta);}

Implementation

Interface

float r,theta;

Restricting access to the implementation of a class through the use of private/public membership is known as encapsulation.

Friends

We can override private access with the friend keyword

class Point

{

public :

friend float distance(Point, Point);

};

float distance(Point p1, Point p2)

{

return sqrt((p1.x - p2.x)*(p1.x - p2.x) +

(p1.y - p2.y)*(p1.y - p2.y));

}

The function distance is a global function and not a member function of Point.

We can define a function f() to shift a point by (1,1) :

void f(Point aPoint)

{

aPoint.shift(1,1);

}

main()

{

Point aPoint1(5,2);

f(aPoint1);

}

This will not have the desired effect - aPoint will be destroyed on exit from f() :

The solution is to pass the Point argument by reference :

void f(Point& aPoint)

{

aPoint.shift(1,1);

}

main()

{

Point aPoint1(5,2);

f(aPoint1);

// aPoint1 now updated

}

An alternative is to use the de-referencing operator * as in C :

void f(Point* aPoint)

{

aPoint->shift(1,1);

}

main()

{

Point aPoint1(5,2);

f(&aPoint1);

// aPoint1 now updated

}

Note that -> replaces . for accessing the member function.

Pointers

References
int x=2;

int x=2;

int* px=&x;

int& rx=x;

(*px)++;

rx++;

px++;

x

 px

x,rx

 2 2

A pointer occupies physical memory.

A pointers value can be changed.

A pointer can be null.

A reference occupies no memory.

A reference must be initialised.

A reference cannot be re-assigned.

Dynamic allocation of memory

The keywords new and delete allow storage to be dynamically allocated and de-allocated :

main()

{

Point* p;

p = new Point(2,5);

p->shift(3,2);

delete p;

}

Memory is allocated on the free store. C++ has no automatic garbage collection and hence memory must be de-allocated by the programmer.

this

this is a self-reference pointer. Each member function has access a pointer of the instantiated object that it is a member of :

 Point aPoint

 public:

 shift()

 {

 .

 this

 .

 }

We can re-write Point::shift() to return a new shifted Point object :

Point Point::shift(int x0, int y0)

{

Point p=*this;

// make a copy

p.x+=x0;

p.y+=y0;

return p;

}

Point p(2,3);

Point p1=p.shift(2,2);

Inheritance is a key aspect of C++ that allows it to support OOP.

We can define a base class Shape for our computer graphics library and derive more specialized classes Point and Circle from it :

[image: image3.wmf] Shape

Point

Circle

Point and Circle inherit all of the attributes (private and public members) of Shape as well as having their own specific ones.

[image: image4.wmf]Shape

private :

int x,y;

protected :

Shape() {...}

public :

plot() {...}

getx() {...}

gety() {...}

shift() {...}

Circle() {...}

public :

plot() {...}

getRadius() {...}

private :

int radius ;

Circle

class Shape{

private:

int x,y;

protected:

// Only accessable by derived

// classes

Shape(int,int);

public:

void shift(int,int);

void plot(){ cout << "Not implemented \n";}

int getx{return x;}

int gety{return y;}

};

class Point : public Shape {

public:

Point(int,int);

void plot();

};

class Circle : public Shape {

private:

int radius;

public:

Circle(int,int,int);

int getRadius{ return radius;}

void plot();

};

The constructors for Shape, Point and Circle are as follows :

Shape::Shape(int x0, int y0) : x(x0),y(y0) { }

Point::Point(int x0,int y0) : Shape(x0,y0) { }

Circle::Circle(int x0,int y0,int r)

: Shape(x0,y0),radius(r) { }

The class implementer would have to provide the plot() functions for Point and Circle :

void Point::plot() { ... }

void Circle::plot() { ... }

Polymorphism is the key aspect of C++ support for OOP.

Virtual functions are the C++ mechanism for supporting the concept of Polymorphism.

Polymorphism means 'many forms' and allows objects with different internal structures to share the same external interface and so can be used in the same way.

Example

Circle aCircle;

Point aPoint;

Shape *s1,*s2;

s1 = &aPoint;
// OK - a point is a shape

s2 = &aCircle;
// OK - a circle is a shape

s1->plot();

// Which plot()?

s2->plot();

// Which plot()?

Since s1 and s2 are declared as pointers to the Shape class, Shape::plot() is called each time - we require runtime overloading.

We can solve the problem by making plot() a virtual function :

class Shape{

private:

int x,y;

protected:

// Only accessable by derived

// classes

Shape(int,int);

public:

void shift(int,int);

virtual void plot()

{ cout << "Not implemented \n";}

int getx{return x;}

int gety{return y;}

};

Classes Point and Circle are as before.

We can now overload the Shape pointers to point to either a Circle or Point object and the correct plot() function is called :

Circle aCircle;

Point aPoint;

Shape *s1,*s2;

s1 = &aPoint;
// OK - a point is a shape

s2 = &aCircle;
// OK - a circle is a shape

s1->plot();

// Point::plot()

s2->plot();

// Circle::plot()

Runtime overloading allows a common user interface to a large hierarchy of classes to be established. The required interface function is invoked at runtime.

Example

Implementation of a GUI based graphics utility.

[image: image5.wmf]Plot

plotCallback()

ShapeList

File

Edit

Help

The implementation of plotCallback() might be as follows :

plotCallback(ShapeList* sl)

{

.

.

Shape* s = sl->getSelectedShape();

.

s->plot();

// runtime overloaded to

// required plot function

.

.

}

Appending extra shapes to ShapeList would not affect

the implementation of plotCallback().

Allows us to provide implementations of operators on our own objects. (Not a feature of Java)

The operator overload function operator op() can be a global (friend function) or a member function

Simplest example is for a complex number class

class complex

{

private :

double re, im;

public :

complex(double r,double i) { re = r; im = i;}

// Global function overload - binary operator

friend complex operator +(complex, complex);

// Global function overload - unary operator

friend complex operator -(complex);

};

The implementations are as follows :

complex operator +(complex a, complex b)

{

return complex(a.re + b.re , a.im + b.im);

}

complex operator -(complex a)

{

return complex(-a.re, -a.im);

}
In this case, both operands (for binary operators) or the single operand (for unary operators) are passed into the friend function

The overload function can be made a member function as follows :

class complex

{

private :

double re, im;

public :

complex(double r,double i) { re = r; im = i;}

// Member function overload - binary operator

complex operator +(complex);

// Member function overload - unary operator

complex operator -();

};

The implementations are as follows :

complex complex::operator +(complex a)

{

return complex(re + a.re , im + a.im);

}

complex complex::operator -()

{

return complex(-re, -im);

}

In this case, the first operand (for binary operators) or the only operand (for unary operators) is *this

The overload functions can be used as follows :

void main()

{

complex z1(3.0,2.0),z2(3.0,-5.0),z3,z4;

z3 = z1 + z2;

// overload operator+

z4=-z3;

// overload operator-

}

z1 + z2 is implemented as operator+(z1,z2) when a global function overload is used and z1.operator+(z2) when a member function overload is used.

-z3 is implemented as operator-(z3) when a global function overload is used and z3.operator-() when a member function overload is used.

Class templates allow the construction of a number of classes from a single class template

Function templates allow the construction of a number of functions from a single function template

We can create a function template by passing a class template as an argument to a function

We can define a simple template array data structure, Vector, which allows arrays of any arbitrary type to be constructed :

template <class T> class Vector

{

private:

T* v;

int size;

public:

Vector(int) ;

// Constructor

int r_size() { return size; }

T& operator[] (int);
// overloaded []

};

template<class T> void Vector<T>::Vector(int sz)

{

v = new T[size = sz];

}

template<class T> T& Vector<T>::operator[](int index)

{

return v[index];

}

int main()

{

Vector<int> v_int(100);

// Vector of 100 ints

Vector<Circle> v_circle(100);
// Vector of 100 circles

Circle c(5,4,10);

v_int[10]=5;

cout << v_int[10];

v_circle[5]=c;

v_circle[5].plot();

}

Example

We can define a sort function template using our Vector template as an argument :

template<class T> void sort(Vector<T>& v)

{

// sort the elements of v into increasing

// order using a bubble sort

int size=v.r_size();

for (int i=0; i<size-1; i++)

for (int j=size; i<j; j--)

if (v[j]<v[j-1])
 // swap v[j] & v[i]

{

T t = v[j];

v[j]=v[j-1];

v[j-1] = t;

}

}

Other points to note about templates

Templates are instantiated by the compiler and involve no extra runtime overhead

Template instantiations can be overridden by providing an explicit function for a particular data type if the instantiated class or function is not appropriate

 C++ Revision Lecture

 Historical Notes

 C and C++

 Objects and Classes

 Pointers to Objects

 Pointers and References

	

 Inheritance

Polymorphism - Virtual functions

Operator Overloading

Templates

PAGE
33

_947401220

_947401959

_922697158

_947401108

_922695964

