Farey Sequences

Definition

A Farey sequence F(n)is a complete sequence of reduced form rational fractions in
a

the range [0..1] of the form F(n) :{% <G e <%} with b, <n for Vj. The

sequence is complete in the sense that, given a Farey sequence as defined above, we
. ) ) p . a p Qaj,
can find no rational fraction — with q <n such that — <—<—.
q bj q bj+1

Theorem

Given a Farey sequence F(n), the following equality holds for 0< j< p:

a,+a;, a,

b, +b,, b

]

Where a—l :O, ap+1 :1, b—l :1, bp+1 :1.

Proof

Proof is Dby induction. For n=2, we have the trivial Farey sequence
F(2) = {%%%} where the above equality holds for j=0. Given a Farey sequence
F(n), the sequence F(n+1) comprises a merge of F(n) and the sequence

k _
F'(n+1)={ ko ki Pt },0<ki <n+1:Vi. If some LeF'(n+1) is not

n+l' n+l n+1 n+1

. : : k'
in reduced form then it can be represented as a reduced form rational fraction o with

k'<n'<n. But this fraction will already be a member of F(n) since F(n) is
complete. Thus only reduced form fractions will be members of F'(n+1) and will be
merged with F(n). The merge is such that all elements of F'(n+1) are inserted in
their correct position in the sequence F(n) in order to produce F(n+1). (This
observation enables an algorithm for the construction of F(n) for any n to be
designed.)

The complete proof will use the following 4 lemmas.



Lemmal

There exists integers a,b, k and n such that %<%<kT+l forn>2, 0<k<n-1 a<b

Proof

Choose a=k,b=n-1. Itis easy to verify that %< ﬁ < %

Lemma 2

After merging, no two consecutive members of F'(n+1) will be consecutive

a.
members of F(n+1). Thus we can always find some fraction b—’such that
j

ki ai ki+l
—L < — <= and where a, <bj <n.
n+1 bj n+1

Proof
This follows directly from Lemma 1 since k;,, >k, +1.
Lemma 3
a
Given a Farey sequence F(n)= 9<i< ..... —p<} , for any -1<j<p,
1 Db, b, 1
a;40; —b;,a; =1.
Proof

. . a;,+a;, q
This follows directly from the theorem ———=—.
j—1+bj+l bj
a_, +a, a
= -t —ab,,+ab,, =a,b +a
b,,+b;,, b

jub; =>ab;, —a; b, =a;,b,—ab;,

This applies for all 0< j < p and can be applied successively to create a sequence

{aobf1 —a by =ab, —ab =....a;,b; —a;b;, =...... a,.b, —apbpﬂ}.

But a,=0,a,=1b,=1b,=n=ab,—a,b,=1and hence a;,b;-a;b 1

for -1<j<p.
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ki aj+l
—<

a,
n+l b,

< are

k.
From Lemma 2 we have some —'1e F'(n+1) such that
n+ j
_ a; aj,
consecutive members of F(n+1) and where ™ and

j j+l

are consecutive members

of F(n) and L is in reduced form.
n+1

k. —a k

i j+ i_aj
n+1-b;,, n+l-b;

Consider the rational fractions . We can prove the following

lemma.

Lemma 4

ki—a;, :i ki —a, :aj+1

n+l-b,, b, n+l-b; b;,

Proof

aj+1> K, =kb. ,<a (+)=k(n+)-a _,(n+)<k(n+)-kb ,h = ki > ki—a,

b, N+l iDja <@y i j+1 i ] n+1-b,
—a. a

Assume —— % <1
n+l-b;, b,

K% A b —a b <a (n+D-a b

- L= i '_a"+l . <a.(n+ —a. i+l

n+l-b, b, b o

= kb; —a;(n+1) <a; b, —a;b;,, = kb, —a;(n+1) <1

j+l jMj+

. k. a;
which follows from Lemma 3. But n_ll > b—‘ = kb; —a;(n+1)>0

+ :

J

Since kib; —a;(n+1) s an integer, our original assumption is false and
k.—a

i j+l a;

i . ki _aj+l |(i T 4ja a'j .
————>—, Since ——————eF(n), —————=—"Dbecause there is no
n+l-b;, b, n+1-b;, n+l-b;, b,

. . p aj p ki .
rational fraction — e F(n) such that — < — < —— as F(n) is complete.
q b, g n+1

The second equality can be proved using a similar technique



k k. ki —a;

a. .

L« kb >a+)=k((n+)—-kb, <k (n+l)-a.(n+1) => —

b, “n+1 b; >a;(n+1) i(n+1) —kib; <ki(n+1)—a;(n+1) 4l n+i-b,
ki —a; .,

Assume >
n+1-b; b,

ki —a, a,
n+1-b > b,., =kb,, —a;b;,, >a,,(n+1)-a;,,b;

=a; b, -ab, >a,,(n+)-kb;, =>a;,(n+1) -kb,,, <

: k. A _
which follows from Lemma 3. But —'1 <34 a;,(n+1)—-kb;, >0
n-+ .
j+1

Since a;,(n+1)—kb;, is an integer, our original assumption is false and
ki —a, <ai+1 ki — j+

i i . ki_aj i aj a .
< . Since ————eF(n), = because there is no
n+l-b; b, n+1-b; n+1-b, i

. . K; aj, .
rational fraction P F(n) such that —— < P G as F(n) is complete.
q n+l q j+1

This proves Lemma 4.

From Lemmas 3 and 4, the proof of the theorem follows directly.

ki _ai a'j+1

n+1_bj B bj+1 - kibjﬂ _ajbjﬂ J+l(n+1) b; a]+l = a]+l(n+1) k. le
ki—a;, a;

—n+1—bj+1 :b—j:> kib, —a;,;b; =a;(n+)-a;b;, = kib; —a;(n+1) =1

k B a;+a;,

n+1 b; +b;,,

kib; —a;(n+1) =a ,(n+1) kb,

This shows that the rational fraction —'1 inserted into F(n) obeys the equality
n+

given in the Theorem. However, we still have to consider preceding values to check
whether the Theorem is generally applicable to F(n+1).

oA, a; kA a, k., a k a
There are 2 possibilities: —— < - < —— <« 2 gpd 2« 2L o Lo T 2
b b, n+l1 b, b, n+l b, n+1 b,

i-1 i

Q.)

a -1 aj j+l - -
b, b_ b, are consecutive terms in sequence F(n).

where



. . Loooa, a; ko a,
Taking the first possibility, <—<—<—
b,, b, n+l1 b,

G2t e 2 = pa,, b, +b,, = pb, f int
o T p = &t = Pay, by by, = pb, for some integer p.
ja1 T 0 '

]

i jl—_ i —>a; +a =k, b +b —(“ 1)becauseb |O+ < ( )
j j+l it Mj i+ i I+
bj-l-bjl n+1

—a;;—a;=pa; -k, b, —b;=pb;, —(n+1)
=a;,; +ki=a;1+p), bj; +(n+1) =b;1+ p)

aH+ki a;

> — =
b, +(n+1) b,

]

Thus the equality holds for when Llis the third term in the triplet. An identical
n+

: k. . . :
proof shows that the equality holds when —'1 is the first term of the triplet and so
n+
ki + aj+2 a'j+1

(n +1)+bj+2 ) bj+1

a,

. a, . a
Taking the second possibility A L I T

n+l b; n+l1 by,

<
j-1

RS E —pa,, b, +b = pb, f i
=L =a, +a, =pa,;, b, +b,, = pb; forsome integer p.

b,,+b;, b
a,+a; k.
-1 i i-1
= —=a ,+a =k, b ,+b =(n+1)
j-1 j i-17 Mj-1 j
b,,+b, n+l1
a;j+a;,  k

=——=a,+a,, =k, b +b_,=(n+1)
bj+b,, n+1 7 P

b, , +2b; +b;,
ki+kH:aH+2aj+aj+1:ki, n+1l= 5
b (2+
=k, +k, =a;(2+p), n+1:M
ki+ki—l aj
= - =
2(n+1) b,

Thus the equality holds in this case also.

We have thus proved by induction that if the equality holds for F(n), then it must
hold for F(n-+1)which completes the proof of the Theorem.



