
Farey Sequences 
 

 

Definition 

 

A Farey sequence )(nF is a complete sequence of reduced form rational fractions in 

the range  1..0  of the form 
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Theorem 

 

Given a Farey sequence )(nF , the following equality holds for pj 0 : 
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where 01 a , 11 pa , 11 b , 11 pb . 

 

 

Proof 

 

Proof is by induction. For 2n , we have the trivial Farey sequence 
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in reduced form then it can be represented as a reduced form rational fraction 
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complete. Thus only reduced form fractions will be members of )1(' nF  and will be 

merged with )(nF . The merge is such that all elements of )1(' nF  are inserted in 

their correct position in the sequence )(nF  in order to produce )1( nF . (This 

observation enables an algorithm for the construction of )(nF  for any n  to be 

designed.)   

 

The complete proof will use the following 4 lemmas. 
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Lemma 2 

 

After merging, no two consecutive members of )1(' nF  will be consecutive 

members of )1( nF . Thus we can always find some fraction 
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Proof 

 

This follows directly from Lemma 1 since 11  ii kk . 

 

 

Lemma 3 

 

Given a Farey sequence 
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Proof 

 

This follows directly from the theorem 
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This applies for all pj 0  and can be applied successively to create a sequence 

 
111110010110 .............   ppppjjjj babababababababa . 

 

But  1 ,1 ,1 ,0 01100101   babanbbaa and hence 111   jjjj baba  

for pj 1 . 
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which follows from Lemma 3.  But 0)1(
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Since )1(  nabk jji  is an integer, our original assumption is false and 
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The second equality can be proved using a similar technique 
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This proves Lemma 4. 

 

 

From Lemmas 3 and 4, the proof of the theorem follows directly. 
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This shows that the rational fraction 
1n

ki  inserted into )(nF  obeys the equality 

given in the Theorem. However, we still have to consider preceding values to check 

whether the Theorem is generally applicable to )1( nF . 

 

There are 2 possibilities:
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Taking the first possibility, 
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Taking the second possibility 
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Thus the equality holds in this case also.  

 

We have thus proved by induction that if the equality holds for )(nF , then it must 

hold for )1( nF which completes the proof of the Theorem. 

 


