
Farey Sequences 
 

 

Definition 

 

A Farey sequence )(nF is a complete sequence of reduced form rational fractions in 

the range  1..0  of the form 
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Theorem 

 

Given a Farey sequence )(nF , the following equality holds for pj 0 : 
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where 01 a , 11 pa , 11 b , 11 pb . 

 

 

Proof 

 

Proof is by induction. For 2n , we have the trivial Farey sequence 
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observation enables an algorithm for the construction of )(nF  for any n  to be 

designed.)   

 

The complete proof will use the following 4 lemmas. 

 



Lemma 1 
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Lemma 2 

 

After merging, no two consecutive members of )1(' nF  will be consecutive 

members of )1( nF . Thus we can always find some fraction 
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Proof 

 

This follows directly from Lemma 1 since 11  ii kk . 

 

 

Lemma 3 

 

Given a Farey sequence 
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Proof 

 

This follows directly from the theorem 
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This applies for all pj 0  and can be applied successively to create a sequence 

 
111110010110 .............   ppppjjjj babababababababa . 

 

But  1 ,1 ,1 ,0 01100101   babanbbaa and hence 111   jjjj baba  

for pj 1 . 

 



From Lemma 2 we have some )1('
1




nF
n

ki  such that 
1

1

1 







j

ji

j

j

b

a

n

k

b

a
 are 

consecutive members of )1( nF  and where 
j

j

b

a
 and 

1

1





j

j

b

a
 are consecutive members 

of )(nF  and 
1n

ki  is in reduced form.  

 

Consider the rational fractions 
j

ji

j

ji

bn

ak

bn

ak













1
 ,

1 1

1
. We can prove the following 

lemma. 

 

 

Lemma 4 
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Proof 
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which follows from Lemma 3.  But 0)1(
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Since )1(  nabk jji  is an integer, our original assumption is false and 
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The second equality can be proved using a similar technique 
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which follows from Lemma 3.  But 0)1(
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Since 11 )1(   jij bkna  is an integer, our original assumption is false and 
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This proves Lemma 4. 

 

 

From Lemmas 3 and 4, the proof of the theorem follows directly. 
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given in the Theorem. However, we still have to consider preceding values to check 

whether the Theorem is generally applicable to )1( nF . 

 

There are 2 possibilities:
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Taking the first possibility, 
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Thus the equality holds for when 
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Thus the equality holds in this case also.  

 

We have thus proved by induction that if the equality holds for )(nF , then it must 

hold for )1( nF which completes the proof of the Theorem. 

 


