
ELECTRONIC, ELECTRICAL AND COMPUTER ENGINEERING

[image: new_crest]

[image: University-of-Birmingham-logo]

Object Oriented Programming Using C#
Assignment 2014-15
[image: AN04208_]
Swarm Intelligence
Name: Yechen Tian
Student Number: 1337236

1. Introduction
This project is to resolve the Travelling Salesman Problem. C# is adopted to program, Unified Modeling Language (UML) is used to model this problem, and the design idea comes from Swarm Intelligence, specifically the ant colony optimization (ACO) algorithm. Besides the ACO algorithm, the Greedy algorithm can be used to design the path, but it is not the best choice.

The ACO algorithm is an algorithm used to find the optimal path in the graph. It was proposed by Marco Dorigo in the year 1992 in his PhD thesis. [1] His inspiration came from a fact that ant seek the path to get their food. The ant colony algorithm is a novel simulated evolutionary algorithm which shows many good properties. Each ant starts to seek food without any information about the position of the food. When one finds the food, it will release volatile secretions which can be called pheromone to the circumstance. The pheromone will gradually volatilize with time lapse, that is to say, the density of the pheromone represents the distance of the path. So it can attract other ant to find the food, and an increasing number of ant will find the food. But some of the ant will not follow the path which has been found, they will seek food through other paths. If the new path is shorter than the path before, they will release more pheromone to attract other ant, and the ant will get food though the shorter path. After a period of time, the ant can probably find the shortest path to get food.

The Greedy algorithm is described as when a big problem need to be solve, no matter what to do, the best solution will adopted based on the present situation. That is to say, the solution is not the best for the whole problem, to some extent, it is only the best choice for part problem. So it cannot provide the optimal solution to all problems, but it can provide approximately optimal solution to some big problems. The Greedy algorithm is a stage treatment solution. [2]
TSP is one of the famous problems in the mathematic area. It is assumed one travelling salesman needs to visit number N cities, he has to choose the path to visit all of the cities. The requirement is anyone of the cities can be visited only once, and through the whole path, the travelling salesman must go back to the initial city where he starts the travel, and the distance of the path should be the shortest among all of the possible paths.

The ACO is used to resolve the TSP. Set value to measure the distance between city i and city j and. Set a value to represent the amount of ant in city i when the time is t, so the whole amount of ant, represents the residual amount of information on the line between city i and city j, assume when the travel start, all the information left in all lines. Parameter represents the information retention, after time n, the information on the line updates to (), in this formula, represents the information which is left by the number k ant in the ij line and represents the information left by all ant which go through the ij line. When k ant go through the line, and when no ant go through the line, . Define The number k ant in its moving process, and represents the probability for the ant k to move from position i to position j, and , a set can be used to record the cities that ant k has passed, and the set means the cities where ant k will probably go. The value represents the sum of the distance which the ant k has passed. Based on the application of the ACO algorithm to the TSP. UML should be created firstly to model this problem. Then according to the UML, the program will be finished to make the functions come true.
UML started from an Object Management Group (OMG) standard, it is a graphic language which supports modelling and software system development. And it can provide modelling and visualization supports to the development of system, including from requirement analysis to specifications and from structure to configuration. Object Oriented Analysis and Design was very popular between 1980s and 1990s, and it gave birth to the UML. It not only unified the expression of Booch, Rumbaugh and Jacobon, but also made a further development, and it became the standard modelling language which is accepted by most people. [3]

In this project, based on the UML, the use-case model, analysis model and design model should be set to finish the program.

2. Use-case Model
2.1. Brain storm
Potential requirements

Table 2.1.1. Prioritization of Potential requirements
	Concept
	Necessity
	Risk
	Cost
	Priority

	Users can open an operation interface to operate. An operation interface should be set.
	High
	Med
	Med
	High

	Data can be typed in or chosen in the operation interface.
	Medium
	Med
	Med
	Med

	City points can be shown in the graph when the data are chosen.
	Low
	Low
	Med
	Low

	The choice of algorithm, according to different algorithm, different path will be shown.
	Medium
	Low
	Low
	Med

	The path will be formed in the graph.
	High
	Low
	Med
	High

Because there is no high risk in all conceptions, all the functions and requirements can be fulfilled.

The use-case diagram is shown in figure 2.1.2. .

Figure 2.1.2. Use-Case Diagram

2.2. Scenario Descriptions
The user starts the operation interface. The user can load the data which he or she wants to use, the data have been saved into the files, and the user just needs to pick one of data. Then the system generates the graph of all points in it. All the positions of the points represent the cities position, user can see the cities position directly. The user can choose the algorithm to calculate the path, different algorithm forms different paths. Finally the path will be shown in the graph according to the algorithm.
2.3. Class Identification
Nouns:
User, cities data, path, operation interface, traveler.
Stereotypical classes:
Boundary Operation interface
Entity Path
Control algorithm
2.4. CRC Cards
CRC cards describe the responsibilities and collaborators of each class. They are vital in the Analysis stage but should be drafted during User Modelling as an aid to identifying attributes, methods and inter-class relationships. The CRC cards is shown in table 2.4.1. .

Table 2.4.1. Class Responsibilities Collaborators Cards
	Class: operation interface
	

	Responsibilities
	Collaborators

	The operation interface is responsible for operating the system and showing the result of the system, and it can show the status of the system. When the operation interface is opened, user can choose data to calculate the path, and user also can change the data to get another path. How the path is formed is based on the algorithm, via choosing which algorithm to use, user can finally get the path they want.
	Algorithm, Path

	Class: algorithm
	

	Responsibilities
	Collaborators

	Algorithm is responsible for path generation. A traveler start from one city, based on the algorithm, he or she choose the next destination. User can choose different algorithm to reach their goal. Different algorithm can form different path, via selecting algorithm, different path will be shown on the interface.
	Operation interface, Path.

	Class: path
	

	Responsibilities
	Collaborators

	The path is the result that user wants. It is optimal path of all the cities. Traveler starts from one city, and go to each city without repetition, finally he or she gets back to the initial city. How the traveler travels is based on the algorithm, that is to say, algorithm decides which way to go, and after the calculation, the result will be shown on the interface.
	Operation interface, algorithm.

2.5. Interaction Diagram
Interaction Diagram is most likely to be a sequence diagram since the sequencing of the messages is most apparent from the user requirements. This diagram shows the interaction relationship among the three classes. The interaction diagram will be shown in figure 2.5.1. .

Figure 2.5.1. Interaction Diagram

2.6. State Chart Diagram
The Class with most and the more significant state transitions in the system. The states are: Idle, date selected, algorithm selected, points formed in the graph, path formed. Through different operations, the user gets the result. The state chart diagram will be shown in figure 2.6.1. .

Figure 2.6.1. State Chart Diagram

2.7. Class Diagram
A simple class diagram showing linkage between class methods and attributes is expected. This diagram should be a first pass. It should not consider the privacy or visibility of methods and attributes and should not show inheritance. It should show composition or aggregation and other relationships. The class diagram will be shown in figure 2.7.1. .

Figure 2.7.1. Class Diagram

3. Analysis Model
From Operation Interface Class
Potential attributes: Interface open, Interface close, Points on the graph, Path on the graph.
Potential methods: Open the Interface, Choose data, Alter data, Select an algorithm, and Alter the algorithm.

From Algorithm Class
Potential attributes: ACO algorithm, Greedy algorithm
Potential methods: Program an ACO algorithm into the system, Program a Greedy algorithm into the system

From Path Class
Potential attribute: Path formed on the graph, Path saved as a file or a picture.
Potential methods: The path connected all cities is the shortest. To each city, the path from and to the city is the shortest. Save the path as a file or picture.
3.1. Attributes
The attributes are listed in the table 3.1.1. . All attributes belong to different classes.

Table 3.1.1. Attributes
	Class
	Attribute
	Comment

	Operation Interface Class
	Interface open
	Status

	
	Interface close
	Status

	
	Points on the graph
	Graph/number

	
	Path on the graph
	Graph/number

	Algorithm Class
	ACO algorithm
	Program

	
	Greedy algorithm
	Program

	Path Class
	Path calculated
	Process

	
	Path saved as file or picture
	Saving

3.2. Methods
Then the methods will be shown in figure 3.2.1. .

Figure 3.2.1. Methods
	Class
	Method
	Comment

	Operation Interface Class
	Open the Interface()

	These operations can be done by users to find the optimal path.

	
	Choose data()
	

	
	Alter data()
	

	
	Select an algorithm()
	

	
	Alter the algorithm()
	

	
	Close the Interface()
	

	Algorithm Class
	Program an ACO algorithm()
	Choose one of the algorithms to design the path

	
	Program a Greedy algorithm()
	

	Path Class
	Form the shortest path()
	According to different algorithms, different paths are formed.

	
	Traveler chooses the nearest city()
	

	
	Save the path as a file or picture()
	The path can be saved, and the user can use it.

3.3. Sequence Diagram
Triggers and parameters are added. Some details are added. Then sequence diagram will be shown in figure 3.3.1. .

Figure 3.3.1. Sequence Diagram

3.4. Class diagram
The class diagram will be shown in figure 3.4.1. .

Figure 3.4.1. Class diagram
[image:]
3.5. State Chart Diagram
The State Chart Diagram should be more detailed and added to some specific actions, and it will be shown in figure 3.5.1. .

Figure 3.5.1. State Chart Diagram

3.6. Non-functional Requirements
When the calculation is finished, the graph should stop running. When error occurs, the operation interface should restart automatically. When data or algorithm has some problem, there should be a window reminding user the wrong information.

4. Design Model
4.1. Revisit Use-case Model
The design meets the requirements. User can use operation interface to get the optimal path. User can choose the data about the cities, and the cities represented as points are formed in the graph, then choose the algorithm, the path will be generated. Users can saved the path as picture or file.
4.2. Sequence Diagram
The sequence diagram in design model is the same as painted in analysis model. It is shown in figure 3.3.1. .
4.3. Textual Description of Object to Object Interaction
The Operation Interface Class provides the operation platform to users to reach their goal, that is to say, users use the interface to get the optimal path.

The Algorithm Class helps to generate different paths which users want, algorithm calculate the path and finally forms a path in the graph shown on the interface.

The Path Class is the result of all operations, it can be shown on the interface and it can be saved to users.
4.4. Implementation of Non-functional Requirements
Non-functional requirements are addressed with the whole system, and it can be embodied with the Operation Interface Class.
4.5. Deployment Model
The whole functions are realized in C#.
4.6. Reconsider the Attributes
The attributes are the same as mentioned in analysis case. They are shown in table 3.1.1. .
4.7. State Chart
Because the attributes do not change, the state chart remains as it shown in 3.5.1. .
4.8. Class Diagram Showing Visibility
The diagram will be shown in figure 4.8.1. .

Figure 4.8.1. Class Diagram Showing Visibility
[image:]

5. Test
Three tests are done in the operation interface. Three groups of data are used to generate the path.
Figure 5.1 shows 29 cities shown as points. Figure 5.2 shows the path generated via Greedy Algorithm, and figure 5.3 shows the path generated via ACO Algorithm.

Figure 5.1 29 cities
[image:]

Figure 5.2 29 cities via Greedy Algorithm
[image:]

Figure 5.3 29 cities via ACO Algorithm
[image:]
Figure 5.4 shows 194 cities shown as points. Figure 5.5 shows the path generated via Greedy Algorithm, and figure 5.6 shows the path generated via ACO Algorithm.

Figure 5.4 194 cities
[image:]

Figure 5.5 194 cities via Greedy Algorithm
[image:]

Figure 5.6 194 cities via ACO Algorithm
[image:]
Figure 5.7 shows 3496 cities shown as points. Figure 5.8 shows the path generated via Greedy Algorithm, and figure 5.9 shows the path generated via ACO Algorithm.

Figure 5.7 1496 cities
[image:]

Figure 5.8 3496 cities via Greedy Algorithm
[image:]

Figure 5.9 3496 cities via ACO Algorithm
[image:]
6. Conclusion
Through the project, users can start an operation interface to select data and algorithm to get the optimal path.

Through the whole project, the UML and C# can be used well. The Greedy algorithm and the ACO algorithm are acknowledged. UML is used to model the TSP, but the UML should be more expertly used and designed.

[bookmark: _GoBack]The ACO algorithm can calculate the optimal path, but it takes a great deal of time. Not only it can takes much time, but also it cannot generate the only one path, which means, when the calculation of ACO algorithm is finished, the path will change rapidly but the distances are nearly the same. Some of the function mention in the UML cannot be realized because it is too complex. When to solve the huge amount of cities problem, it will occur out time phenomenon by using the ACO algorithm, and the path cannot be generated. This should be improved.

7. References
[1] Gambardella L M, Dorigo M. Solving Symmetric and Asymmetric TSPs by Ant Colonies[C]//International conference on evolutionary computation. 1996: 622-627.
[2] Wikipedia, “Greedy algorithm”, http://en.wikipedia.org/wiki/Greedy_algorithm, 25-11-2014.
[3] Booch G, Rumbaugh J, Jacobson I. The unified modeling language user guide[M]. Pearson Education India, 1999.
23

image3.wmf

image4.emf
User

Operation Interface

Data select

points generation

Algorithm select

Path generation

Microsoft_Visio_2003-2010_Drawing1.vsd
�

�

�

�

�

�

User

用例

Operation Interface

Data select

points generation

Algorithm select

Path generation

image5.emf
User

：Operation interface

:Algorithm :Path

Select data

Open the Interface

Choose the algorithm

Path generation

Algorithm change

Get a new path

User gets the path

Microsoft_Visio_2003-2010_Drawing2.vsd
�

�

�

�

�

�

�

�

�

User

用例

：Operation interface

:Algorithm

:Path

Select data

Open the Interface

Choose the algorithm

Path generation

Algorithm change

Get a new path

User gets the path

image6.emf
Idle Data selected

Algorithm selected Points formed in the graph

Path formed

Start the interface Select a goup of data

system process

Clean the data

data no change

Clean all data

Calculate the path

Change the algorithm

Select an algorithm

Data reselection

Microsoft_Visio_2003-2010_Drawing3.vsd
�

�

�

�

Idle

状态图

Data selected

Algorithm selected

Points formed in the graph

Path formed

Start the interface

Select a goup of data

system process

Clean the data

data no change

Clean all data

Calculate the path

Change the algorithm

Select an algorithm

Data reselection

image7.emf
Operation Interface

Algorithm

Path

Microsoft_Visio_2003-2010_Drawing4.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Operation Interface

Algorithm

静态结构

Path

image8.emf
User

:Operation Interface

:Algorithm

:Path

Open the interface

Click on the file to add data

Points formed on the graph

Select one algorithm

Path calculated and formed

Algorithm shown on interface

Path is saved as a picture of a file

User changes the data

New points are shown in graph

Use another algorithm

New path generated

Open the Interface()

Choose data()

Alter data()

Select an algorithm()

Alter the algorithm()

Save the path as a file or picture()

Form the shortest path()

Traveler chooses the nearest city()

Form the shortest path()

Traveler chooses the nearest city()

Microsoft_Visio_2003-2010_Drawing5.vsd
�

�

�

�

�

�

�

�

�

�

User

用例

:Operation Interface

:Algorithm

:Path

Open the interface

Click on the file to add data

Points formed on the graph

Select one algorithm

Path calculated and formed

Algorithm shown on interface

Path is saved as a picture of a file

User changes the data

New points are shown in graph

Use another algorithm

New path generated

Open the Interface()

Choose data()

Alter data()

Select an algorithm()

Alter the algorithm()

Save the path as a file or picture()

Form the shortest path()
Traveler chooses the nearest city()

Form the shortest path()
Traveler chooses the nearest city()

image9.png
Algorithm:

Operation Intertace.

ACO algorithm [Prograrm].
Greedy algorithm [Program}

Program an ACO algorithmi).

LProgram a Greedy sigoritmo. |

Interface open [status]

Interface close [status}

Points on the graph [graph or number)
Path on the graph [graph or number.

Open the Interface()
Choose datal)-

Alter data).

‘Select an algorthm()
Alter the aigorithm().
Close the Interface()

“Path

Path calculated [Process].
Path saved as fie or picture [Saving]

Form the shortest path()-
Traveler chooses the nearest cty()
Save the path as a il or picture)-

image10.emf
Idle (do:wait) data(do:saved in database)

algorithm(do:calculate the path)

points in the graph(do:describe the cities position)

path generation (do:be saved)

Start Click on the file to add data

Clean the date

Confirm the data and click on OK

Alter data

Click on file to select one algorithm

Confirm the selection and click on OK

Path is saved

Clean the algorithm selection

Alter the algorithm

Clean all choice

Microsoft_Visio_2003-2010_Drawing6.vsd
�

�

�

�

�

�

�

�

�

Idle (do:wait)

data(do:saved in database)

algorithm(do:calculate the path)

points in the graph(do:describe the cities position)

path generation (do:be saved)

Start

Click on the file to add data

Clean the date

Confirm the data and click on OK

静态结构

Alter data

Click on file to select one algorithm

Confirm the selection and click on OK

Path is saved

Clean the algorithm selection

Alter the algorithm

Clean all choice

image11.png
:Algorithm Class-

-ACO algorithm [Program]-
-Greedy algorithm [Program]-

+Program an ACO algorithm()

+Program a Greedy algorithm().

:Operation Interface Class-
“Interface open [Status]-
-Interface close [Status].
-Points on the graph[Graph/number].
-Path on the graph.

+Open the Interface().
+Choose data()-
+Alter data().

+Select an algorithm().
+Alter the algorithm().
+Close the Interface()-

:Path Class-

“Path calculated [Process].
-Path saved as file or picture [Saving]-

~Form the shortest path().
-Traveler chooses the nearest city().
+Save the path as a file or picture()-

image12.png
L=
File

TSP Solver

TSPForm

NAME: wi29
Optimum tour length: 27603
DIMENSION: 29 cities

Current towr length:

Local Opt Improvemnet:

image13.png
File TSP Solver

TSPForm

NAME: wi29
Optimum tour length: 27603
DIMENSION: 29 cities

Current towr length: 36388

Local Opt Improvemnet: (t=29),0

Greedy algorithn progress

image14.png
TSPForm
File TSP Solver

NAME: wi29
Optimum tour length: 27603
DIMENSION: 29 cities

Current tour length: 29268

Local Opt Improvemnet: (t=91),0

ACO algorithm progress

image15.png
TSP Solver

TSPForm

NAME: qal%4
Optimum tour length: 9352
DIMENSION: 194 cities

Current tour length:

Local Opt Improvemnet:

image16.png
TSPForm
File TSP Solver

HAME: qal94
Optimum tour length: 9352

DIMENSION: 194 cities

Current tour length: 10520

Local Opt Improvemnet: (t=7),0

ACO algorithm progress

image17.png
TSPForm

File TSP Solver

NAME: nu3496
Optimum tour length: 96132
DIMENSION: 3496 cities

Current tour length:

Local Opt Improvemnet:

image18.png
L) TSPForm

NAME: nu3496
Optimum tour length: 96132
DIMENSION: 3496 cities

Current tour length: 122412

Local Opt Improvemnet: (t=3496),0

Greedy algorithm progress

image19.png
-]

TSPForm

File TSP Solver

NAME: nu3496
Optimum tour length: 96132
DIMENSION: 3496 cities

Current tour length:

Local Opt Improvemnet:

ACO algorithm progress

image1.png
PER|| AD
ARDUA[ALTA

image2.png
UNIVERSITYOF
BIRMINGHAM

