ELECTRONIC, ELECTRICAL AND SYSTEM ENGINEERING

Cli““r‘ PER ‘W%
am ARDUA ALTA

UNIVERSITYOF
BIRMINGHAM

Object Oriented Programming Using C#

Assignment 2014-15

Name: Hanxiao Lin

Student ID Number: 1448679

Abstract Nowadays, plenty of programming languages (C, C++, Java for example)
provide more and more choices for human to solve the different problems in our daily
life. C# can be considered as the Object Oriented Programming (OOP), which is a
kind of programming development method which mainly focus on the objects. As we
know, the traditional programming designs are based on the functions, or
mathematics, however, in the Object Oriented Programming, each object is able to
receive data and send the data to the other objects after analyzing. So, it is obvious

that C# allows us to get the solutions in a more convenient way.

This paper is going to design a program by using the Unified Modeling Language
(UML) and C# to solve the Traveling Salesman Problem (TSP), which is one of the

most typical optimization problems in the world.

In order to find the optimal scenario, the Greedy algorithm and Ant-based
optimization (ACO) algorithm will be used in designing. By using the Greedy
algorithm and ACO algorithm, the program can provide several different answers to

the Traveling Salesman Problem.

Key Words: OOP C# TSP ACO

Table of Content

A S A - v v e |
1. INTrOQUGCHION -« - v e 1
1.1. The Traveling Salesman Problem: - - - ceeeereeimi 1
1.2. Greedy Aigorithm .. 1
1.3. ACO Algorlthm .. 1
2. USE Case ViEW: -t rrrrrrr ettt e 2
2.1 Potential Requirements ... 2
2.2 Scenario Descriptions ... 4
2.3 Class Identification -« -- - rrrrrrrrrmrr 5
2.4 CRC Cards: - srrrerrrrrreeeeeeee ettt te i tta et tataetatanaas 6
2.5. Interaction Diagram .. 8
2.6. Statechart Diagram .. 9
2.7 Class Diagram ... 9
3. AnalySiS 1V [0 Y0 =) B R EEREETRRR 11
3. A DULES s - v v 11
B2, MEthOO S o c v s e e 12
3.3. Sequence Diagram .. 13
3.4. Class Diagram .. 14
3.5. Statechart Diagram .. 15
3.6. Non-functional Requirements ... 15
3.7. PaCkageS ... 15

4' DeSIQn Modellng .. 16

4.1. Revisit Use-Case Model: - - crrerrrrrmm e 16

4.2. Sequence Diagram .. 16

4.3. Textual Description of Object to Object Interaction:-«----------coeeereeeeeees 16

A, SUDSYSIEIMS -+ v eereesee e 17
4.5. Implementation of Non-functional Requirements:-«--«--«--ooeoeeeereeeeenees 17
4.8, LEQACY ISSUBS -+ e e mrmeesee et 17
4.7 RECONSIAEE tNE AHFIDULES: -+« v+« crrrreremmemmnnmain et eei e eeiaaee 17
4.8, StateChart:--c-cocrrer e e 17
4.9. Key IMPIEMENLALION: -+« +wwsreerreereeameeamee e, 17

4 .10. Class Dlagram ShOWIng VlSlblllty .. 18

5. Using C# t0 Realize the DESign:--«+«+++++«+wr-rrerrommamesaeasi i 19
51 Usab”'ty of the Graphica| User Interface: -« - oororrreerrmemniniiiiiiiiin., 19

5.2 Execute A|gor|thm ... 21
521 Greedy A|gor|thm ... 22

522 ACO Algonthm .. 22

5.3 SUMIMATY-+++++++e+verressmermtintstt it 23

5. CONCIUSIONS # v s v v e s rr e et r ettt e ettt st st ta e et e sttt 24
REFEIEIGES -+ +eeereeeeem e ettt ettt 25
AADPEIAIX: e 26

List of Figures

Figure 2.1. Use-Case Diagram_ .. 3
Figure 2.3. Class Diagram (StEreotypes). -« -« -« reerrremeameaeaieinii, 6
Figure 2.5. Interaction Diagram: Sequence Diagram.---«--««-oocooorereree. 8
Figure 2.6. INitial StAtECR@Art. -+« reereeeremee s 9
Figure 2.7.1. Class Diagram (USE-Case).-«-««+«--«+-wrsrermsrmmsieaeaeaea, 10
Figure 2.7.2. Class Diagram (USE-Case). «--«+«+---«=wrsremraramsisian, 10
Figure 3.3. Analysis Model SeqUENce DIagrams. -««-««««-«««-wreweeeraerieeiaa. 13
Figure 3.4. Analysis Model Class Diagram.-««««««-=sssttrrreemmrtrm 14
Figure 3.5. Analysis Model StateChart. - -«-««-«--reereeeromeiesieii 15
Figure 4.10. Design Model Class Diagram Showing Visibility.--«««-xooeoeeeeeeeenens 18

List of Pictures

Picture 5.1.1. GUI FOrm .- ccccorrrrrrrr e et e e 19
Picture 5.1.2. Open ATSP File. covrerrerree 20
Picture 5.1.3. TSP File Loaded. - ----- - rrrrrrrrm e 20
Picture 5.1.4. ‘About’ Button Pressed. - - crrrerrmeirimiii 21
Picture 5.2. ‘Solvers’ BUON PreSSEa. -« - rwr errermammmmaaatiiaeeieaaeeeeaeeann 21
Picture 5.2.1. Greedy AlGOrithm. «++««««« eerrrrrri 22
PiCtUre 5.2.2. ACO AIGORRI. -+« +-x-wssrereesee e 23
List of Tables

Table 2.1. Potential Requirements_ ... 2
Table 2.4. Class Responsibility Collaboration Cards.«-«««xoreeeeerereeerees 7
TADIE 3.1, AFIDULES. -+« +evvrreeeemmrmmmmn e et e et 11
TADIE 3.2, MEENOUS. -+« -+ rremermmemm ettt et 12

1. Introduction

1.1. The Traveling Salesman Problem

The Traveling Salesman Problem is an optimization problem which describing a
salesman wants to travel to all the cities in the map and tries to find the shortest path.
In order to explain in a more clearly way, we can set of N, E represent cities and the
arcs which connect every nodes N. Also we can create cities i and j, so we can use
dj to represent the distance between them (i, j € N). Obviously, if each city must be
visited once and once only, we can say that the TSP is looking for the minimal length

dj in a closed tour.

1.2. Greedy Algorithm

Greedy algorithm is an algorithm which only choose the best solution in each step.
By doing so, can the algorithm get the optimization solution. In this design, for
solving the TSP, Greedy always choose the nearest city as salesman’s next
destination, finally, salesman can travel all cities. In a word, Greedy algorithm always

goes to the city which has the smallest dj.

1.3. ACO Algorithm

Ant-based optimization (ACO) algorithms give another way to solve the TSP. Such
algorithm based on the ants’ pheromone as they traveled. It is not hard to image that
two ants in city i and both of them need to go to city j. However, there are two ways
for them to choose, and they choose the different path. So, in the same time period,
ants travel between cities i and j constantly and left same pheromone per step, the

shorter path may deposit more amount of pheromone. If we define T is the current

pheromone and it is easy to discover where the 7 is highest, the djis shortest path.

1

2. Use Case View

2.1 Potential Requirements

Table 2.1. Potential Requirements.

Concept Necessity | Risk | Priority
A friendly, convenience interface. High Low | High
Showing the cities clearly. High Low | Med
Showing the TSP file’s information. Low Low | Med
Giving the optimization path and its length. High Med | High
Different plans should be provided. Medium Med | Med
Program can read another TSP file at any time. Medium Low | Med
Information of the program can be found. Low Low | Med
User can exit as long as they want. High Low | Med

According to the Table 2.1 shown that there is no huge risk with all the requirements
mentioned above. Therefore, these additional requirements should be included in the

design.

The Use-Case diagram is shown in Figure 2.1 on the following page.

weJsgdoid ayy jo
uollewJojul ayy moy

T<<apnju>_

sainoJ ay3 Aejdsiq

wJo4 ul sanId == -7
ay3 Ae|dsiq

21e[NJjed 03 swyios|e

9|} dS1 3yl ul 0DV 3snh 01,00V, X210

uoljewJiojuiayl mo

91e[Ndjed 01 swyllose
pa31g asn 01 ,ApaaJo, Yd||

weidoid ay1 xi3)

T<<apnpus>_

;Emhmoa Y3 X3 031 ,1X3, 211D
9plJan0 J03ealdQ

<<3apnpui>>

-~

/311 dS.L 2y uado pue
91} dSL Y3 peay ¥ -~ <o

asooyd 03 ,uadQ, Y2112

43sn
JAY3IS40

wJio4 NS

nuaw ul 1noqvy, 211D

NUaW Ul JAAJOS dS1, 9S00Y)D

nuaw ui 3|14, asooy)

¥3isn
31vd3dO

Figure 2.1. Use-Case Diagram.

2.2 Scenario Descriptions

Operate User(1):

GUI Form:

Map area:

Observe User(1):

Operate User(2):

GUI Form:

Map area:

Observe User(2):

Operate User(3):

GUI Form:

The user wants to gets the optimization route among the cities, by
selecting the ‘File’>’Open’ in top menu to choose the map in need. User
can click the ‘About’ in top menu to get the information of the program

(author or program version) if they want.

As long as the user choose the TSP file they want to analysis, GUI form
shows the cities as points in the display area. The information of TSP file
(file’s name, cities number, optimization length) should be shown at the
mean time. As user click the about button, a message box which
contains the program’s information should pop in the middle of the

screen.

The information of TSP file (file’'s name, cities number, optimization
length) should be shown at the mean time which allow the observe user

to check.

Check the cities, file information shown on the map area, GUI form

respectively. As everything is checked, go on to operate the GUI form.
As the cities shown in the display area, user can choose the algorithm
they want to use (Greedy algorithm or ACO algorithm).

After the user choose the algorithm, program allow the codes begin to

operate.

When the calculate finish, the path should give and draw as lines in the

display area between the cities points.

Check the every detail shows on the map area and GUI form (cities and

paths shown on the map, Information shown on the GUI form).

User may stop the program at any time they want by clicking the

‘File’>’Exit’ in top menu.

Allow the program stop and exit when system receive the exit command.

Override: When another TSP file is loaded, system should erase the old cities and
stop calculate no matter what is going on. Then, the information and

cities in new TSP file should be shown in the certain area.

2.3 Class Identification

Then ‘Nouns’ mentioned above are: TSP File, Program, Cities, Paths, Greedy
algorithm, ACO algorithm, GUI Form, Click Buttons, Map, Cities’ Distance, Ants,

Pheromone, User. The noun ‘User’ is external to the software to be design.

As we taught that nouns might have too few attributes or methods associated with

them, that's why stereotypical classes are needed.

Stereotypical classes:

Boundary: Click Buttons, GUI Form, Map
Analysis: Cities List, Cities’ Distance, Pheromone
Contr0|: Codes

According to the ‘Nouns’ and the stereotypical classes, it is clear that we can get a

minimal set of classes: Codes, GUI Form, Map.

The GUI Form and Map are interface class. GUI form contains the buttons and Map
cluster the cities and paths. Codes class is the core of the design, it not only manage
the action of Map class, but also contains algorithms which are used for analyzing
TSP data. So, the code class can be defined as entity and control class. As shown in
Figure2.3.

(

Codes

/

GUI Form Map

Figure 2.3. Class Diagram (Stereotypes).

2.4. CRC Cards

For identifying attributes, methods and inter-class relationships. CRC (Class
Responsibility Collaboration) cards not only show the collaborators of each class, but
also describe its responsibilities. That's why CRC cards are quite significant in

Analysis stage and should be drafted during this modeling.

Table 2.4. Class Responsibility Collaboration Cards.

Class: GUI Form

Responsibilities

Collaborators

The GUI Form is responsible for updating the information in TSP
file which is loaded. This class not only should include the
function choices, but also included algorithms. Exit button and
Copyright button should be used too. Solver button operate the
program to start using the algorithms the user chosen to
calculate the optimal path. GUI Form also allow the user load

the TSP file in any cases.

Codes, Map

Class: Map

Responsibilities

Collaborators

The map class is responsible for showing the points which
represent the cities. When the program get the solution, map
should draw lines represent the optimal path. By using lines, the
points be linked together and when all points be linked, the
mapping is finished. As long as there is any TSP file be loaded,
map should erases everything and draw points as cities

immediately.

Codes, GUI Form

Class: Codes

Responsibilities

Collaborators

The codes class is responsible for calculate the optimal path
between the cities. The codes class messages the map which
city is going to visit next. If all cities have been visited, the
program stops to wait for other commands. The codes class
also responds to the new TSP file. When new file loaded, the

algorithms override all operate.

GUI Form, Map

2.5. Interaction Diagram

Collaboration and sequence diagram or called Interaction diagram, describes how
instances of use-case interact each other and how classes interact. These diagrams

can help us to understand the user requirements in a more clearly way.

The Sequence Diagrams are shown in Figure 2.5 on the following page.

] |

DrawPointsasCities

DrawPaths

AnalysisCities

| JReadFile
D,
D

:Codes
T
-)Override
Codes
H

TSPFileLoaded

WriteTSPInformation

ExcuteAlgorithm

:GUIForm
[
|
i

SelectTSPFile
Click’ About’Button
Click’Exit’Button
SelectAlgorithm
Click’Exit’Button
«— — — — — — — —

«— — — — — —
|
|
P!
i
|
;I
|
|
|

:GUIForm :
T
|
Ll
|
|
|
|
|
|
|
|
—
|
J
V|

4_______

@
Operate
Usler
|
H
@
Observe
User
1

Figure 2.5. Interaction Diagram: Sequence Diagram.

2.6. Statechart Diagram

This diagram describes the transitions between different states. The states are: Idle,

Draw Point as Cities, Algorithms, Draw Lines as Paths, Exit response.

ExitProgram

. f . .
PowerUp Idle 15PFilel oaded » Draw Points as Cltlesw
»
«— : J
. /) WaitForCommands/Wait()

A

GotOptrmalResult

NewTSPFileLoaded
(Draw Lines as Paths

L J< CalculateOptimalPath

ExitProgram|

ExitProgram ‘(EXIt Responsewl

PowerOff

Figure 2.6. Initial Statechart.

2.7 Class Diagram

An initial class diagram showing the relationship (composition or aggregation)
between classes. Not all of the classes are contain in this diagram and there are not
any privacy, visibility or inheritance of methods and attributes described. Shown as
Figure 2.7.1 and Figure 2.7.2.

:Getinformation

7

>

:LoadData

>

]

:GUI Form :Codes :Map
l\ | | |
:GetCommands :LoadTSPFile :LoadData :DisplayBoard

:GetInformation :GetCities

:ACOAlgorithm :GreedyAlgorithm :DrawPoints

:GetPaths :DrawPaths
Figure 2.7.1. Class Diagram (Use-Case).
:GUI Form :Codes :Map
:GetCommands :LoadTSPFile :DisplayBoard

:GetInformation

:ACOAlgorithm

1

A

:Getlnformation :GetCities
:GreedyAlgorithm :DrawPoints
[Zﬁ
:GetPaths :DrawPaths

Figure 2.7.2. Class Diagram (Use-Case).

10

3. Analysis Model

3.1. Attributes

Class

GUI Form

Map

Codes

Table 3.1. Attributes.

Attribute
FileButtonPressed
OpenButtonPressed
DataRead
SelectTSPFile
CitiesPosition
Showlnformation
SolverButtonPressed
AlgorithmButtonPressed
AboutButtonPressed
ExitButtonPressed
CitiesPositions

Paths

ClearMap
LoadTSPFile
CitiesList
SelectDestination
Algorithm

TotalLength

11

Comment
Boolean
Boolean
Status
Status
Double Array
String
Boolean
ACO/Greedy
Boolean
Boolean
Double Array
Double Array
Boolean
Status
Double Array
Double Array
ACO/Greedy

Integer

3.2. Methods

Table 3.2. Methods.

Class Methods Comment
GUI Form ShowToolStripMenu()
ShowOpenFileDialog()
OpenTSPFile() Load the TSP file
LoadData()
SetCities()
Writelnformation() Name, length, number of cities

ChooseAlgorithm(')

ShowProgramlInformation() Provide author’s information
Eixt()

Map DrawCitiesPoints() According to TSP file
DrawPathsLines() According to algorithm
EraseMap() Clean cities and paths

Codes FileLoaded() Information read
ExecuteAlgorithm() Program calculating
SelectNextCity() Choose an un-visited city

DeleteVisitedCity()
GetTotalLength()

ExitResponse() Manage exit response

12

3.3. Sequence Diagram

In this part, more details are considered and the triggers are added. The diagram

also has some changes according to the consideration of attributes and methods.

The Diagram shown as Figure 3.3 on the following pages.

_ |
_ [_— — — — >
| | ¢
I | I ()esuodsayux3/ux3
| |
_ |||||||||| —_———— — — — — — _———— >
L M 7| ||||||| >
1 ()saunyiledmesa/syied ()ybuaTelol1e9/yibuaelo],
! Ava_uaxwztm_mm\co:mc_uweum_mmﬁ |
| P |
| AE_%S_m_>sm_mo>m:$:_uﬁ 1 WGIIOBaToaX T WOV 4 (UOETE0005
_ . " \vmmww._n_.cozsm_EEcomZ
; ; — 1957
den: S9po): wiojino: SABSED
@)
“ | . o
| <
_ _‘
_ | T]
" | _AA Juollew.ojujwel3oidMoys
” _ _ /passaidinoqy
I Y - — - - — — — — —_ T _—__1%
| ()uonewsoyuPIIM o
| ()saulodmeaa/suonisodsalyd JUOHEWIOIMOYS |
_A ()deasesz/deyues|d ()ere@peot/peayeleq “M ||||||| >
! | ()2114dS1u=d0/3]14dS 139335
|
|
_ _ -
_ | ' ()Boleigaiiguadomoys 7
| _ “ /passauduolinguad ._w_mD
|
den: Sopo): wio4iNo: 9jesad

Figure 3.3. Analysis Model Sequence Diagrams.

13

3.4. Class Diagram

Whole class diagram with data types in Figure3.4 on the following pages.

:Codes :GUI Form
LoadTSPFile: boolean FileButtonPressed: boolean
CitiesList: double array OpenButtonPressed: boolean
SelectDestination: double array DataRead: boolean
Algorithm: boolean[ACO/Greedy] SelectTSPFile: boolean
TotalLength: integer Cities Position: double array
TCodes() T ShownInformation: string
~Codes{) 1..Operate commands SolverButtonPressed: boolean

AlgorithmButtonPressed: Boolean[ACO/
Greedy algorithm]
AboutButtonPressed: boolean

FileLoaded()
ExcuteAlgorithm(ACO/Greedy algorithm)

SelectNextCity(City))

Delete VisitedCity(City) _DutbutionPressed-boaleam
GetTotalLength():int GUI Form()

ExitResponse() ~GUI Form()

ShowToolStripMenu()
ShowOpenFileDiaglog()

OpenTSPFile()

LoadData()

SetCities()

WriteInformation():string
ChooseAlgorithm(ACO/Greedy algorithm)
ShowPrograminformation():string

Exit()

:Ma

Cities Positions: double array
Paths: double array
ClearMap: boolean

1..Positions of cities and paths "RZ;;;(-) --------------------------------
~Map()

DrawCitiesPoints(city)
DrawPathslines(path)

EraseMap()

Figure 3.4. Analysis Model Class Diagram.

14

3.5. Statechart Diagram

The changed statechart in Figure3.5 on the following pages.

TSP File Loaded

Powert_1_p| idle SelectTSPFile/OpenTSPFile() .
Do:Wait()

A
SelectTSPFile/ | | ClearMap/

OpenTSPFile() vEraseMap()

Exit/ (Show File Information w

Exit/ ExitResponse()

ExitResponse()

Do: CityPositions/DrawPoints()
ShowlInformation/Writelnformation()

Exit/
ExitResponse()

Alogrithm/
ExcuteAlogrithm(ACO/Greedy)

SelectTSPFile/
OpenTSPFile()

A 4

poweroff | Exit Response

<

\
(Optimal Path Calculation

SelectTSPFile/
L OpenTSPFile()

Exit/
ExitResponse()

SelectDestination/
SelectNextCity()

A 4

i Exit/ Visit Next City
ExitResponse()

UPaths/DrawPathsLines()

Figure 3.5. Analysis Model Statechart.

3.6. Non-functional Requirements

There is nothing to do when the power fail.

3.7. Packages

Because there are only three classes in this design, so the packages is unnecessary.

15

4. Design Modeling

4 1. Revisit Use-Case Model

According to the analysis above and consider about the use requirements shown as

Use-Case Diagram in Figure 2.1, all the requirements are met.

4.2. Sequence Diagram

No more details needed in this case.

4.3. Textual Description of Object to Object Interaction

Just consider about the user requirements, the system is not so difficult and the

diagram showed above also provide a clear description.

The GUI Form class handles interaction with user and make possible for user to
control the whole program. User not only can let program load TSP file, but also

shows information of file and allow user exit at any time.

The Map class shows the positions and paths for the user which make everything

becomes easier to understand.

The Codes class is the core of the design. The class contains the ACO algorithm,
Greedy algorithm and other interface code which are the most complex part of the

design.

16

4.4. Subsystems

The design does not need the subsystems due to its property.

4.5. Implementation of Non-functional Requirements

Showing the program’s information is the non-functional requirement in this design,
and the implementation of it can be found in GUI Form class, though its codes are in

the Codes class.

4.6. Legacy Issues

This design is based on C#, which allow other to rewrite the codes. So, others can

use this design to solve the similar problem with a little changes in codes.

4.7. Reconsider the Attributes

The attributes are incorporated in the Class Diagram showed above in Figure3.4.

4 8. StateChart

No further revisions required.

4.9. Key Implementation

It is obvious that the key of implementation of this design is the algorithm which

located in the codes.

17

4.10. Class Diagram Showing Visibility

Both Greedy algorithm and ACO algorithm need to delete the data when another
TSP file is loaded so additional Method required. The diagram shown in Figure 4.10.

:Codes :GUI Form
-LoadTSPFile: boolean -FileButtonPressed: boolean
-CitiesList: double array -OpenButtonPressed: boolean
-SelectDestination: double array -DataRead: boolean
-Algorithm: boolean[ACO/Greedy] -SelectTSPFile: boolean
-TotalLength: integer -Cities Position: double array
Codes() -Sh:)wnlnformatlon:jfrtl)ngI
~Codes() 1..Operate commands -SolverButtonPressed: boolean

-AlgorithmButtonPressed: Boolean[ACO/
Greedy algorithm]
-AboutButtonPressed: boolean

+FileLoaded()
+ExcuteAlgorithm(ACO/Greedy)

-Select NextCity(City))
-Delete VisitedCity(City) DitbutionPressed-boolesn =
+GetTotalLength():int GUIForm()
+ExitResponse() ~GUI Form()
-Initialise(City: double array, Path: double +ShowToolStripMenu()
array, Information:string) +ShowOpenFileDiaglog()
-PowerOff() +0OpenTSPFile()

-Cleardata{Information: string)
-LoadData()

-SetCities()

+WriteInformation():string
-ChooseAlgorithm(ACO/Greedy)
+ShowPrograminformation():string
-Exit()

-Cities Positions: double array
-Paths: double array
-ClearMap: boolean

1..Positions of cities and paths| ~map()

-DrawCitiesPoints(city)
+DrawPathsLines(path)
+EraseMap()

-ClearCitis(City: double array
-ClearPaths(Path: double array)

Figure 4.10. Design Model Class Diagram Showing Visibility.

18

5. Using C# to Realize the Design

5.1 Usability of the Graphical User Interface

This part will give out the efficiency of the Graphical User Interface (GUI). According
to the user requirements and the design shown above, the GUI should consist of

friendly interface and commands clearly. As shown in Picture 5.1.1.

X

File Solvers About

Name:
Dimension:

Optimum Tour Length:

Current Tour Length:

Local Opt Improvement:

Picture 5.1.1. GUI Form.

It is easy to find that there are three commands can be selected at menu bar.
‘File’, 'Solvers’ and 'About’ respectively. By clicking ‘File’ button, can we find ‘Open’
and ‘Exit’ buttons, as clicking ‘Open’, an open file dialog pop in the middle of the
screen which allow user to choose the TSP file to be loaded. ‘Exit’ allow user to exit
the program. And the priority of them is the highest which means whether system is
calculating or drawing map, it must load another TSP file or exit the program as the

commands from the user immediately. As shown in Picture 5.1.2.

19

File | Solvers About
[Open
Exit 1) « bin » Debug » TSP Files v ¢ | EETSPFiles »
Ry R = I @
A g : FEHEE #m
o 1
O zamm 7 ca4663 2011/2/17 £55.. TSP it
EE T dj3s 2011/1/7 880 ... TSP X
= BR 7 lu9so 2011/1/14 .. TSP 3%
£ 301 "1 nu3496 2011/2/17 28.. TSP 3Ti
BT 7 qa194 2011/1/6 E580 ... TSP i .
b =5 7 w1621 2011/3/21 £88.. TSP 30#4 | 218
kEE T uy734 2011/1/6 S8 ... TSP X4
&, 05 () 7 wi2e 2011/1/6 25800 ... TSP XXif
s 595)) zig29 2011/1/6 E8EM .. TSP Xf%
ca Info (E)
ca Data (F)
B rnawsmsm s Y€ 2
Y#E(N):I v| ‘(".tsp;) v
[aF0) || = |

Picture 5.1.2. Open a TSP File.

After a TSP file loaded, the cities and information should be shown in display area as

shown in Picture 5.1.3 (In this case, we use ‘wi29.tsp’ for testing).

File Solvers About

Name: wi29
Dimension: 29 cities

Optimum Tour Length: 27603

Current Tour Length:

Local Opt Improvement:

Picture 5.1.3. TSP File Loaded.

Button ‘About’ on the menu bar can operate at any time to show the information of

the program by popping a message box in the screen as shown in Picture 5.1.4.

20

ag! Lin's TSP Solver = 8

File Solvers About

Name: wi29
Dimension: 29 cities

Optimum Tour Length: 27603

Current Tour Length:

. Local Opt Improvement:
Welcome to Hanxiao Lin's TSP Solver.

Picture 5.1.4. ‘About’ Button Pressed.

5.2 Execute Algorithm

The program provides two algorithms which allow the user to compare the different
paths and length between algorithms. User can choose whether Greedy algorithm or

ACO algorithm by clicking the ‘Solvers’ in the menu bar. As shown in Picture 5.2.

ag X
File | Solvers | About
Greedy Algorithm - .
| AcoAigorithm | Sl iy
'
»
Dimension: 29 cities

Optimum Tour Length: 27603

. . Current Tour Length:

. & Local Opt Improvement:

Picture 5.2. ‘Solvers’ Button Pressed.

21

5.2.1 Greedy Algorithm

Greedy algorithm begin to execute as the user click the ‘Greedy Algorithm’ in the

‘Solvers’ in menu. The optimal paths display in the map area, as shown below.

a Lin's TSP Solver - olEN

File Solvers About

Name: wi29
Dimension: 29 cities

Optimum Tour Length: 27603
Current Tour Length: 36388

Local Opt Improvement: (t=29),0

Greedy Progress

Picture 5.2.1. Greedy Algorithm.
According to the figure and operation, it is not hard to discover that using Greedy
algorithm allow user to get the result in a very short time, however, the paths are
much farther than the optimum tour length. The one of the main reason of the time-
saving is that such algorithm just needs to compare the distances between cities and
always pick up the shortest one, and the distances between cities are loaded and

calculated when the TSP file is read.

5.2.2 ACO Algorithm

According to the report introduction, author get the basic parameters which are
tmax=3000’, ‘B=7" and ‘p=0.5. In order to find the shortest path and ensure the map
would not flash, author use ‘tmax=3000’, ‘B=6.5" and ‘p=0.45" which may lead to better

results.

Ant-based optimization (ACQO) algorithm begin to execute when user click the ‘ACO

Algorithm’. The optimal paths display in the map area, as shown in Picture 5.2.2.

22

a Lin's TSP Solver - o IEN

File Solvers About

Name: wi29
Dimension: 29 cities

Optimum Tour Length: 27603

Current Tour Length: 28894

Local Opt Improvement: (t=1557),0

ACO Progress

Picture 5.2.2. ACO Algorithm.
From figures and operation, we can find that using ACO algorithm allow user to get a

better result than Greedy algorithm. The optimum length calculated in this part is not
so far from the optimum length which is given by the TSP file. However, one of the
most obvious disadvantage is ACO algorithm takes much time compared with the
Greedy algorithm. Also, ACO cannot guarantee the same result at any time and

paths may change though long time past.

5.3 Summary

Comparing with the two algorithms it is easy to discover that Greedy algorithm can
provide a steady result though is not the best choice. ACO algorithm has better
accuracy than Greedy but takes much more time especially when the number of
cities is large. In summary, ACO algorithm is more reliable and might be the better

choice for the users or salesmen.

Above pictures are the screen shots by testing through ‘wi29.tsp’, other TSP file
testing screen shots are shown in appendix. And code can be found in program files

which are attached with this report.

23

6. Conclusions

The first part of the report outlines the idea and analyses requirements. This report
uses UML to design the program for meeting demands. Such part designed in detail

and all steps complete fully.

The second part of report uses the C# to realize the design. In this part, GUI form
and Greedy algorithm have finished completely, but ACO algorithm still needs more
promotion. One or more versions of ACO algorithm with different parameters are

expected.

The design teach us how to analysis user’s requirements and consider all of them in
detail. By designing the system, not only can we learn how to use design tools (UML
& C#), but also known how to design in a more professional (as an engineer)
approach. However, the name used in UML design are not corresponding with the
name used in C# completely. This mainly due to lack of experience and may lead to
some problems which should be avoided. Also, some details, opening another TSP
file (or using another algorithm) when an algorithm is processing for example,
program may get stuck which leads to inconvenience for the users and should be

avoided.

In conclusion, the design meets the requirements mainly, the usability of the GUI is
absolutely fine. Greedy algorithm also can works perfectly. However, the efficiency of
ACO algorithm needs improve. So, the program is able to achieve the specification

and has full functionality though some details should fixed and improved.

24

References

Deitel, H. M. and Deitel, P.J. (2009) Visual C# 2008. How to Program. 3"ed. Upper

Saddle River, N.J. : Pearson/Prentice Hall

Song Z. (2009) TSP Research based on Ant Colony Algorithm. Master

dissertation, JiangXi University of Science and Technology.

Spann, M. (2014) Object Oriented Programming Using C# Assignment 2014-15.

University of Birmingham.

Spann, M. (2014) Object Oriented Programming Using Course Slides 2014-15.

University of Birmingham.
Pycock, D. (2014) Lift Control System. University of Birmingham.

Pycock, D. (2014) Object-Oriented Software Design UML: Unified Modelling

Language. University of Birmingham.

25

Appendix

Testing Pictures

Testing File: dj38; Testing Algorithm: Greedy

File Solvers About

Name: dj38

Dimension: 38 cities

Optimum Tour Length: 6656

Current Tour Length: 9749

Local Opt Improvement: (t=38),0

Greedy Progress

Testing File: dj38; Testing Algorithm: ACO Algorithm

File Solvers About

Name: dj38

Dimension: 38 cities

Optimum Tour Length: 6656

Current Tour Length: 6922

Local Opt Improvement: (=535),0

ACO Progress

26

Testing File: qa194; Testing Algorithm: Greedy Algorithm

File Solvers About

Name: qa194

Dimension: 194 cities

Optimum Tour Length: 9352

Current Tour Length: 11893

Local Opt Improvement: (=194),0

Greedy Progress

Testing File: qa194; Testing Algorithm: ACO Algorithm

File Solvers About

Name: qa194
Dimension: 194 cities

Optimum Tour Length: 9352

Current Tour Length: 10538

Local Opt Improvement: (t=13),0

ACO Progress

27

Testing File: uy734; Testing Algorithm: Greedy Algorithm

File Solvers About

Name: uy734
Dimension: 734 cities

Optimum Tour Length: 79114
Current Tour Length: 102594

Local Opt Improvement: (t=734),0

Greedy Progress

File Solvers About

28

Name: uy734
Dimension: 734 cities

Optimum Tour Length: 79114
Current Tour Length: 97923

Local Opt Improvement: (t=5),408

ACO Progress

Testing File: zi929; Testing Algorithm: Greedy Algorithm

File Solvers About

Name: zi929

Dimension: 929 cities

Optimum Tour Length: 95345

Current Tour Length: 117734

Local Opt Improvement: (t=929),0

Greedy Progress

Testing File: zi929; Testing Algorithm: ACO Algorithm

File Solvers About

Name: 71929
Dimension: 929 cities

Optimum Tour Length: 95345

Current Tour Length: 113250

Local Opt Improvement: (t=6),2511

ACO Progress

29

	AbstractNowadays,plentyofprogramminglanguages
	1.Introduction
	1.1.TheTravelingSalesmanProblem
	1.2.GreedyAlgorithm
	1.3.ACOAlgorithm

	2.UseCaseView
	2.1PotentialRequirements
	Table2.1.PotentialRequi
	Figure2.1.Use-CaseDiag

	2.2ScenarioDescriptions
	2.3ClassIdentification
	Figure2.3.ClassDiagram

	2.4.CRCCards
	Table2.4.ClassResponsibilityCollaborationCard
	Figure2.5.InteractionDiagram:SequenceDiagram.

	2.6.StatechartDiagram
	Figure2.6.InitialStatechart.

	2.7ClassDiagram
	Figure2.7.1.ClassDiagram(Use-Case).
	Figure2.7.2.ClassDiagram(Use-Case).

	3.AnalysisModel
	3.1.Attributes
	Table3.1.Attributes.

	3.2.Methods
	Table3.2.Methods.

	3.3.SequenceDiagram
	Figure3.3.AnalysisModelSequenceDiagrams.

	3.4.ClassDiagram
	Figure3.4.AnalysisModelClassDiagram.

	3.5.StatechartDiagram
	Figure3.5.AnalysisModelStatechart.

	3.6.Non-functionalRequirements
	3.7.Packages

	4.DesignModeling
	4.1.RevisitUse-CaseModel
	4.2.SequenceDiagram
	4.3.TextualDescriptionofObjecttoObjectInter
	4.4.Subsystems
	4.5.ImplementationofNon-functionalRequirements
	4.6.LegacyIssues
	4.7.ReconsidertheAttributes
	4.8.StateChart
	4.9.KeyImplementation
	4.10.ClassDiagramShowingVisibility
	Figure4.10.DesignModelClassDiagramShowingVi

	UsingC#toRealizetheDesign
	5.1UsabilityoftheGraphicalUserInterface
	Picture5.1.1.GUIForm.
	Picture5.1.2.OpenaTSPFile.
	Picture5.1.3.TSPFileLoaded.
	Picture5.1.4.‘About’ButtonPressed.

	5.2ExecuteAlgorithm
	Picture5.2.‘Solvers’ButtonPressed.
	5.2.1GreedyAlgorithm
	Picture5.2.1.GreedyAlgorithm.

	5.2.2ACOAlgorithm
	Picture5.2.2.ACOAlgorithm.

	5.3Summary

	6.Conclusions
	References
	Appendix

