
ELECTRONIC, ELECTRICAL AND COMPUTER ENGINEERING

Object Oriented Programming Using C#

UML

Assignment 2014-15

Swarm Intelligence

Name: DONGLIN YANG

Student ID Number: 1458881

- 1 -

I Introduction

In nature, the ant’s food source is always randomly scattered around the nest, by

people’s careful observation, it can be found that ants can always find a shortest path

from their nest to food source after a period of time. Meanwhile, the route between the

nest and the food source is almost like a straight line, rather than circular or other

curved shapes. The ant colony not only can find the shortest route, but also to adapt to

the change of environment. For example, in the ant movement path, there is an

obstacle suddenly appearing. Initially the distribution of each ant is uniform, the

probability of each path by ants selected is same, regardless of the length of path. Ants

can leave pheromone on their passed path, and also be able to perceive the pheromone

intensity, which in order to guide their direction of motion, ants tend to move toward

the direction of a higher concentration of pheromone. At the same time, there will be

more pheromone left on the shorter path, select the shorter path ants also increase. It

is not difficult to see that, the collective behavior of a large number of ants is a kind of

feedback phenomenon, which is more the numbers of ants walk through a path, higher

probability for the later ants choose. Individual ants search for food by this method

and finally find the shortest path.

Ant colony optimization (ACO) algorithm is a kind of simulation optimization

algorithm by imitating ants foraging behavior. It is first proposed by Italian scholar

Dorigo M et al in 1991, after that he systematically researched the basic principles

and mathematical models of ACO algorithm. Additionally compared with TSP

optimization problem, genetic algorithms, tabu search algorithm, simulated annealing

algorithm, hill climbing and other simulation experiments, these researches has laid

the foundation of ACO algorithm, and has caused the worldwide attention and study.

Earlier ACO algorithm was successfully used to solve the well-known traveling

salesman problem (TSP), the algorithm uses distributed positive feedback

- 2 -

computation and parallel computing, easy to combine with other methods, but also

has strong robustness. However the long searching time and easy to fall into local

optimal solution is its obvious defects. This paper will focus on the application of

ACO algorithm in TSP, in order to describe in detail how the ACO algorithm applied,

it should be introduced TSP first.

II Background

1. The Traveling Salesman Problem

The traveling salesman problem (TSP) refers to a salesman to visit multiple locations,

how to find the shortest path which through each site once then return to the starting

point. Rules are simple, but the solution may become extremely complex after

increasing the number of sites. Generally considering, the most basic solution is to list

each alternative routes (that means making permutations and combinations for these

sites). Then calculate the total distance of each route, choose the shortest one as the

optimal solution. As shown in Figure 1, given four cities A, B, C, D, all of

combinations can be represented by a state space diagram. There are six alternative

routes, from which it is easy to find the shortest path, additionally due to the

symmetric reasons, the total of alternative route changed to 3 finally. It is not difficult

to see that when the number of city is N, there are (N-1)! / 2 possible closed tours.

With the increasing of city numbers, the route number will become the law of

exponential growth that reaches the incalculable point. Currently assuming the city

number is 20, there are (20-1)! / 2≈6.082×10
16

 available paths.

- 3 -

B

A

C

D

A

B C D

C

CD

D

D

DB

B

B

B

C

C

A

Figure 1 State space Diagram of Four Cities Routes Combinations

2. ACO algorithm applied in TSP

ACO algorithm is a kind of iterative algorithm, a part of ants were released out to

look for solutions in each iteration, the city refers to ant in TSP. In this problem, each

ant makes a probabilistic choice for the route and they communicate by pheromone.

Therefore, the higher concentration of pheromone path, the more ants choose.

ACO used for solving N cities TSP, d ij is defined as the distance between two cities i

and j, m is defined as the number of ants in each iteration,)(tij indicates the amount

of pheromone in the arc (i, j) at time t,)0(ij = C which means the amount of

pheromone at initial time on each path is C (C is a constant). After the time n, the

amount of pheromone can be expressed by the following equation (1):

  () 1 ()
ij ij ij

t n t        (1)

1

m
k

ijij
k




   (2)

where]1,0( is the amount of pheromone volatilization and  ij


is the pheromone

of all of passing arc (i, j) ants deposited in this iteration. Meanwhile,
k
ij represents

the quantity of pheromone by each ant k left on the arc (i, j) in this iteration.
k
ij can

be expressed by the following equation:

- 4 -

/ if (,)
 1..

0 if (,)

k k

k

ij k

Q L i j T
k m

i j T


 
  


 (3)

where Q is the pheromone intensity which is a constant, kT is the tour by ant k in this

iteration and kL is its length.

(1,2, ,)ktabu k m used to record the ant k passed city, and  k

ijp t is defined as the

probability of ant k choosing to go from city i to city j at time t.  k

ijp t can be

expressed as the following equation:

 

 

 

0

k

ij ij

k
k

is is
ij

s allowed

t
j allowed

tp t

others

 

 

 

 





 




 (4)

where  k kallowed C tabu  represents the ant k’s selection of allowed city in its

next step. α is the heuristic coefficient which indicates the relative importance of the

track. β is the expectation coefficient which determines the influence of arc length

over accumulated pheromone.
ij is heuristic function which equals to 1/ ijd . Finally,

maxNC is defined as the maximum number of iterations.

In order to do comparison with the ACO algorithm, this program introduces the

greedy algorithm which simply chooses the nearest unvisited city as the next one until

the ant has passed all cities. The greedy algorithm is a time saving method, but it

cannot find the optimal solution.

- 5 -

III Design of Unified Modeling Language

1. Introduction

Unified Modeling Language (UML) is a commonly used in object-oriented modeling

approach, which considers from different point of view defining a set of graphs, such

as use case diagram, class diagram, object diagram, state chart diagram, sequence

diagram, interaction diagram, etc. Use case diagram describes the system function

from a user perspective, and points out the function of the operator. Class diagram

describes the static structure of the class in the system. Object diagram is an instance

of the class diagram and shows the relationship between different objects. State chart

diagram describes the states and their controls, commonly used in modeling dynamic

characteristic. Sequence diagram describes the dynamic cooperative relations between

objects, emphasizing the sequence of sending messages, at the same time shows the

interaction between objects. Interaction diagram is similar as the sequence diagram,

used to describe the partnership between objects. Then, these diagrams will be used in

Use-Case Model, Analysis Model, and Design Model to solve the traveling salesman

problem (TSP).

In this paper, the program “TSP-Solution” used to find solutions of TSP. When the

user opening this program, there are three menus are “File”, “TSP Solver”, and

“About” can be clicked. Meanwhile, the data information, calculate status, program

information and a button “Close” can be seen in the right side of interface, also a large

blank area displayed in the center. The menu “File” used to load and select the TSP

test data, “TSP Solver” used to choose greedy algorithm or ACO algorithm to find

solutions, “About” used to show the compiler information. The data information

displays the file name, optimum tour length and dimension (the number of cities). The

calculate status shows current iterative count which can be set by the user, also the

current tour length showed in this area. The program information will display the

algorithm progress when the user running this program. If the user wants to exit this

- 6 -

program, just click the button “Close”. The large blank area will display a map as the

final solution when the program runs out.

2. Use-Case Model

2.1 Use Case View Diagram (Figure 2)

User

Click the Menu "File"

Click the Menu "TSP Solver"

Click the Menu "About"

Click the Button "Close"

Load Test Data

Close

The author information will

be shown on the screen

Exit from this

program

Open the File Selection

Interface and select the Test

Data

Greedy Algorithm

ACO algorithm

Choose the start point then the

solution will be shown on the

screen

Set the coefficient of ACO

algorithm and start point, then

the solution will be shown on the

screen

Figure 2 TSP-Solution Use-case Diagram

2.2 Scenario Descriptions

The user click the menu “File” then the drop-down menu will show two selections

“Close” and “Load Test Data”. When the menu “Load Test Data” is clicked the file

selection interface will appear on the screen and the user can choose the test data.

After that, the selected test data will be traced out as several points in the central

blank area, meanwhile in the right side of this program interface will show the data

information which includes the file name, optimum tour length and dimension. Below

that there is an interface named algorithm progress which displays “Data have read

successfully”. If the menu “Close” is clicked, this drop-down menu will be closed.

- 7 -

The user click the menu “TSP Solver” then the drop-down menu will show two

selections “Greedy algorithm” and “ACO algorithm”. When the menu “Greedy

algorithm” is clicked, there will is an interface which let the user choose the start

point then click the button “Start Greedy algorithm”, also the progress bar at the

bottom of the screen will show the progress. After a period of time the solution will be

displayed as a map in the center, the right side of this program interface will show the

current tour length. When the menu “ACO algorithm” is clicked, there will is an

interface which let the user set the coefficient of ACO algorithm and select “Use

Random” or “Set City Index” which set the start point as the user like. Then click the

button “Begin ACO Resolve” and the progress bar at the bottom of the screen will

show the progress, also the current iterative count will increased from 1 to NcMax

(which is the count of iteration as a kind of coefficient set before) in the right side.

After a period of time the solution will be displayed as a map in the center, the right

side of this program interface will show the current tour length.

The user click the menu “About” then the author’s information will be shown in the

center of screen. The user click the right side button “Close” then an interface “Are

you sure to exit” displayed in the center, the user can choose “Yes” to exit from this

program or “No” to close this interface.

Note: The user should load TSP test data first then choose a kind of TSP solver to find

solutions. Otherwise, the drop-down menu of “TSP Solver” will be grayed

which means the user cannot select an algorithm.

2.3 Class Identification

Nouns

User, menus, program, interfaces, test data, blank area, information, algorithm, start

point, progress bar, solution, map, coefficient.

Stereotypical classes

Boundary: Menus, interface, information, coefficient, solution

- 8 -

Entity: User, test data, map, author information

Control: Program (greedy algorithm and ACO algorithm belong to program)

Conclusion

Reconsidering the prompts from the list of Nouns and stereotypical classes, a single

TSP Window class (which contain the form of setting coefficient of two algorithms

and the interface of author information) is sufficient. Therefore, the final class

diagram is shown in Figure 3.

Program TSP Window

Figure 3 Class Diagram (Stereotypes)

2.4 CRC Cards

Table 1 Class Responsibility Collaboration Cards

Class: TSP Window

Responsibilities Collaborator

The TSP Window class is responsible for showing the menus,

“Close” button, data information, calculate status, algorithm

progress, progress bar, selecting and loading the test files,

setting the coefficient and start point, tracing out test data’s

points in the blank area, and drawing a map as visual for the

final solution.

Program

Class: Program

Responsibilities Collaborator

The program class is responsible for searching for solutions

by Greedy algorithm and ACO algorithm respectively,

receiving coefficient information and start point from TSP

Window class, sending information of solution to TSP

Window class.

TSP Window

- 9 -

2.5 Statechart Diagram

Idle

TSP_TestData File

Open TSPForm

Click the menu

“File”and “Load

Test Data”

Data information and
points displayed

Select and load
the test file

Set the start point
Set the coefficient and

start point

Click the menu

“TSP Solver”and

“ACO Algorithm”
Click the menu “TSP

Solver”and “Greedy

Algorithm”

Solution map and length

Wait

Click the button

“Close”

Click the button

“Close”

Click the button “Close”

Figure 4 Initial Statechart

- 10 -

2.6 Interaction Diagram

U
se

r

TS
P

 W
in

d
o

w
P

ro
gr

am
O

pe
n

TS
PF

or
m

C
lic

k
th

e
m

en
u

"F
ile

"
an

d
"L

oa
d

Te
st

D
at

a"
O

pe
n

TS
P_

Te
st

D
at

a
Fi

le
 W

in
do

w

Se
le

ct
 t

es
t

fi
le

Lo
ad

 t
es

t
da

ta

D
at

a
in

fo
rm

at
io

n
an

d
po

in
ts

 d
is

pl
ay

ed

C
lic

k
th

e
m

en
u

"T
SP

 S
ol

ve
r"

 t
he

n
ch

oo
se

 "
G

re
ed

y
A

lg
or

it
hm

"
or

 "
A

C
O

 A
lg

or
it

hm
"

O
pe

n
co

ef
fi

ci
en

t
an

d
st

ar
t

po
in

t
se

tt
in

g
in

te
rf

ac
e

Se
t

co
ef

fi
ci

en
t

an
d

st
ar

t
po

in
t

Se
nd

 c
oe

ff
ic

ie
nt

 a
nd

 s
ta

rt
 p

oi
nt

 in
fo

rm
at

io
n

C
al

cu
la

te
 s

ol
ut

io
ns

 b
y

A
C

O
 a

lg
or

it
hm

or

 G
re

ed
y

al
go

ri
th

m
Se

nd
 in

fo
rm

at
io

n
of

 s
ol

ut
io

ns

D
ra

w
 t

he
 s

ol
ut

io
n

m
ap

s
an

d
sh

ow

th
e

cu
rr

en
t

to
ur

 le
ng

th
Fi

nd
 t

he
 b

et
te

r
so

lu
ti

on
s

Se
nd

 t
he

 b
es

t
so

lu
ti

on
 o

f
lim

it
ed

 it
er

at
io

ns

D
is

pl
ay

 t
he

 f
in

al
 s

ol
ut

io
n

m
ap

 a
nd

 t
ou

r
le

ng
th

C
lic

k
"C

lo
se

"
bu

tt
on

Figure 5 Interaction Diagram

- 11 -

3. Analysis Model

3.1 Attributes

Class Attribute Comment

TSP Window strTestDataPath File path of test data

FrmACO Form of parameter set of ACO Algorithm

FrmGreedy Form of start point set

FrmAbout Form of author information

Bitmap Map of point of test data

Graphics Map of finding solution

BestRoute Record the best hints of city point

xCoordinateArray Store x coordinate of city

yCoordinateArray Store y coordinate of city

im Ant count

dAlpha Heuristic coefficient

dBeta Expectation coefficient

dRho Information volatilization:0<=ρ<1

dQ Pheromone intensity

iNcMax Iteration count

iCityCount City count

CurrentNc Current iteration count

dXMax The max value of x coordinate of city

dYMax The max value of y coordinate of city

Program N City count

M Ant count

Nc Current iteration count

inittao Initial amount of pheromone

[] x x coordinate of N cities

[] y y coordinate of N cities

 [,] distance Matrix of city distance

- 12 -

[,] tao Matrix of the amount of pheromone

[,] eta Matrix of heuristic function

[,] detatao Matrix of the amount of pheromone increment

alpha Heuristic coefficient

beta Expectation coefficient

rho Information volatilization:0<=ρ<1

Q Pheromone intensity

Nc_max Maximum count of iteration count

[,] tabu Matrix of recording the ant k passed city

[] bestRoute Array of storing cities belongs to best route

3.2 Methods

Class Method Comment

TSP Window LoadTestData() Load test data of TSP

ReadTSPData(string

strFilePath)

Read The TSP file

"strFilePath">file name of TSP test data

DrawCityVertex() Draw the city vertex

RestPicBox() Reset the picture of form Graphics

DrawMinRoadLine() Draw current minimum road

PaintPoint() Draw the city point

WriteMsgToList() Write the message of algorithm progress

OutPutLength() Output current minimum length of tsp

ACOlgorithmTool

StripMenuItem_Click()

Open the parameters set form of ACO

BeginACOCalcate() Start ACO calculate

StartGreedyCalculate() Start calculation of greedy algorithm

SetProgressBar() Set progress bar

BtnClose_Click() Close this TSP Window

- 13 -

 GreedyAlgorithmTool

StripMenuItem_Click()

Open the start point set form of Greedy

BtnBeginACO_Click() Begin ACO calculate-code

BtnBeginGreedy_Click() Begin greedy calculate-code

Program Init() Initial information of the ACO algorithm

or greedy algorithm

FindOptimalPath() Find the best path of TSP using ACO

algorithm or greedy algorithm

EvaluateSolution() Calculate the minimum distance of the

TSP road by using ACO or greedy

algorithm

- 14 -

3.3 Analysis Model Class Diagram

Program

N:integer
M:integer
Nc:integer
Inittao:double
[] x:double
[] Y:double
[,] distance:double
[,] tao:double
[,] eta:double
[,] detatao:double
alpha:double
beta:double
rho:double
Q:double
Nc_max:integer
[,] tabu:double
[] bestRoute:integer

Program()
~Program()
Init()
FindOptimalPath()
EvaluateSolution()

TSP Window

strTestDataPath:string
FrmACO:boolean
FrmGreedy:boolean
FrmAbout:boolean
Bitmap:boolean
Graphics:boolean
BestRoute:integer
xCoordinateArray:double
yCoordinateArray:double
Im:integer
dAlpha:double
dBeta:double
dRho:double
dQ:double
iNcMax:integer
iCityCount:integer
CurrentNc:double
dXMax:double
dYMax:double

TSP Window()
~TSP Window()
LoadTestData()
ReadTSPData(string strFilePath)
DrawCityVertex()
RestPicBox()
DrawMinRoadLine()
PaintPoint()
WriteMsgToList()
OutPutLength()
ACOlgorithmToolStripMenuItem_Click()
BeginACOCalcate()
StartGreedyCalculate()
SetProgressBar()
BtnClose_Click()
GreedyAlgorithmToolStripMenuItem_Click()
BtnBeginACO_Click()
BtnBeginGreedy_Click()

kind of
algorithms

Figure 6 Analysis Model Class Diagram

- 15 -

3.4 Analysis Model Statechart

Idle

TSP_TestData File

Open TSPForm

LoadTestData()
ReadTSPData(string strFilePath)

Data information and
points displayed

DrawCityVertex()RestPicBox()
PaintPoint()WriteMsgToList()

SetProgressBar()

Set the start point
Set the coefficient and

start point

BeginACOCalcate()

ACOlgorithmToolStripMenuItem_Click()

BtnBeginACO_Click()

Solution map and length

Init()FindOptimalPath()
EvaluateSolution()

DrawMinRoadLine()
OutPutLength()

SetProgressBar()

BtnClose_Click()

BtnClose_Click()

BtnClose_Click()

Figure 7 Analysis Model Statechart

- 16 -

3.5 Analysis Model Interaction Diagram

U
se

r

TS
P

 W
in

d
o

w
P

ro
gr

am
O

p
en

 T
SP

Fo
rm

R
ea

d
TS

P
D

at
a(

st
ri

n
g

st
rF

ile
P

at
h

)

Lo
ad

Te
st

D
at

a(
)

D
ra

w
C

it
yV

er
te

x(
)

R
es

tP
ic

B
o

x(
)

P
ai

n
tP

o
in

t(
)

W
ri

te
M

sg
To

Li
st

(
)

Se
tP

ro
gr

es
sB

ar
(

)

St
ar

tG
re

ed
yC

al
cu

la
te

(
)/

B
eg

in
A

C
O

C
al

ca
te

(
)

G
re

ed
yA

lg
o

ri
th

m
To

o
lS

tr
ip

M
en

u
It

em
_C

lic
k(

)
/A

C
O

lg
o

ri
th

m
To

o
lS

tr
ip

M
en

u
It

em
_C

lic
k(

)

B
tn

B
eg

in
G

re
ed

y_
C

lic
k(

)
/B

tn
B

eg
in

A
C

O
_C

lic
k(

)
Se

n
d

 c
o

ef
fi

ci
en

t
an

d
 s

ta
rt

 p
o

in
t

in
fo

rm
at

io
n

In
it

(
)

Ev
al

u
at

eS
o

lu
ti

o
n

(
)

Se
n

d
 in

fo
rm

at
io

n
 o

f
so

lu
ti

o
n

s

D
ra

w
M

in
R

o
ad

Li
n

e(
)

O
u

tP
u

tL
en

gt
h

(
)

Se
tP

ro
gr

es
sB

ar
(

)

Se
n

d
 t

h
e

b
es

t
so

lu
ti

o
n

B
tn

C
lo

se
_C

lic
k(

)

Fi
n

d
O

p
ti

m
al

P
at

h
(

)

D
ra

w
M

in
R

o
ad

Li
n

e(
)

O
u

tP
u

tL
en

gt
h

(
)

Se
tP

ro
gr

es
sB

ar
(

)
B

tn
C

lo
se

_C
lic

k(
)

Figure 8 Analysis Model Interaction Diagram

- 17 -

4. Design Model

4.1 Revisit Use-Case Model

The Design meets the requirements.

4.2 Sequence Diagram

The principal qualifiers have already been added.

4.3 Textual Description of Object to Object Interaction

This is a simple system and the various diagrams give a clear description. The

following description is intended for introduction.

The TSP Window class is responsible for interacting with the user which includes

showing the menus, “Close” button, data information, calculate status, algorithm

progress, progress bar, selecting and loading the test files, setting the coefficient and

start point, tracing out test data’s points in the blank area, and drawing a map as visual

for the final solution.

The Program class is responsible for initializing information of the ACO algorithm or

greedy algorithm, calculating solutions and searching for the best path of TSP by

using these two algorithms.

4.4 Subsystems

No subsystems are required as this is a simple design.

4.5 Implementation of Non-functional Requirements

No Non-functional Requirements.

4.6 Deployment Model

This program is implemented on a single processor.

4.7 Legacy Issues

No legacy issues.

4.8 Reconsider the Attributes

Incorporated in the Class Diagram.

4.9 Reconsider the Associations

The use of Aggregation remains appropriate.

4.10 StateChart

- 18 -

No further revisions required.

4.11 Class Diagram Showing Visibility

Program

+N:integer
+M:integer
-Nc:integer
-Inittao:double
+[] x:double
+[] Y:double
+[,] distance:double
-[,] tao:double
-[,] eta:double
-[,] detatao:double
-alpha:double
-beta:double
-rho:double
-Q:double
-Nc_max:integer
-[,] tabu:double
-[] bestRoute:integer

Program()
~Program()
+Init()
+FindOptimalPath()
+EvaluateSolution()

TSP Window

-strTestDataPath:string
+FrmACO:boolean
+FrmGreedy:boolean
+FrmAbout:boolean
-Bitmap:boolean
-Graphics:boolean
-BestRoute:integer
-xCoordinateArray:double
-yCoordinateArray:double
-Im:integer
-dAlpha:double
-dBeta:double
-dRho:double
-dQ:double
-iNcMax:integer
-iCityCount:integer
-CurrentNc:double
-dXMax:double
-dYMax:double

TSP Window()
~TSP Window()
-LoadTestData()
-ReadTSPData(string strFilePath)
-DrawCityVertex()
-RestPicBox()
+DrawMinRoadLine()
+PaintPoint()
+WriteMsgToList()
+OutPutLength()
-ACOlgorithmToolStripMenuItem_Click()
-BeginACOCalcate()
-StartGreedyCalculate()
+SetProgressBar()
-BtnClose_Click()
-GreedyAlgorithmToolStripMenuItem_Click()
-BtnBeginACO_Click()
-BtnBeginGreedy_Click()

kind of
algorithms

Figure 9 Design Model Class Diagram Showing Visibility

- 19 -

IV Implementation and Test

When the user open the program “TSPForm” the initial interface will be shown as

following Figure 10. If the user want to get information about the compiler, just click

the menu “About” (Figure 11).

Figure 10 The Initial Interface

Figure 11 “About” Form

- 20 -

Clicking the menu “File” and select “Load TestData”, the test data file selection

interface (Figure 12) will appear which for user choose test file of TSP.

Figure 12 Test Data File Selection Interface

After that, the selected test data will be traced out as several points in the central

blank area, meanwhile in the right side the data information will be updated which

includes the file name, optimum tour length and dimension. Below that there is an

interface named algorithm progress which displays the data have read successfully

(shown as Figure 13).

Figure 13 Data Loaded Interface

- 21 -

Next, the user click the menu “TSP Solver”, then choose “Greedy Algorithm” or

“ACO Algorithm”. When “Greedy Algorithm” is selected, the “Start City No for

Greedy Solve” form (Figure 14) comes out. When “ACO Algorithm” is selected, the

“Parameters Set for ACO Algorithm” form (Figure 15) comes out.

Figure 14 “Start City No for Greedy Solve” Form

Figure 15 “Parameters Set for ACO Algorithm” Form

After setting the start point of greedy algorithm, click the button “Start Greedy

Algorithm” and the solution (Figure 16) will be displayed quickly. After setting the

start point and parameters of ACO algorithm, click the button “Begin ACO Resolve”

- 22 -

and the best solution (Figure 17) will be shown after a period of time, the waiting time

will become longer with the count of iteration increasing.

Figure 16 Solution by Using Greedy Algorithm

Figure 17 Solution by Using ACO Algorithm

- 23 -

V Conclusion

From figure 16 and figure 17, for the TSP of 194 cities, the current tour length of

greedy algorithm is 11893, however the current tour length of ACO algorithm is

10601. The optimum tour length for 194 cities TSP is 9352. It is not difficult to see

that the solution of ACO algorithm is more close to the optimum length than greedy

algorithm’s solution. Therefore, comparing with greedy algorithm, ACO algorithm is

more efficient.

Additional, ACO algorithm compared to the optimal solution there is still a certain

gap. This basic ACO algorithm can be improved to get an advanced version, which

may be closer to the optimal solution.

- 24 -

Reference

[1] M. Spann, “Object Oriented Programming Using C# Course Slides,” 2014 - 15.

[2] David Pycock, “Object - Oriented Software Design UML: Unified Modelling

Language”, Issue 2.2, 2014 - 15.

[3] H.M. Deitel, P.J. Deitel, “Visual C# 2010. How to Program,” 3
rd

 Edition, ISBN

0-13-701183-0.

[4] P. Stevens, R. Pooley, “Using UML: Software Engineering with Objects and

Components,” 2
nd

 Edition, ISBN 0-321-26967-5.

[5] Duan Haibin, Wang Daobo, Zhu Jiaqiang, Huang Xianghua, “Development on ant

colony algorithm theory and its application,” Control and Decision, vol. 19(22),

pp. 1321-1327, Dec. 2004.

[6] Duan Haibin, “Ant Colony Algorithm: Theory and Applications,” 1
st
 Edition,

ISBN 7-03-016204-8.

