

James Junior Nkhata | MSc Electronic and Computer Engineering | October 23, 2014

Swarm Intelligence
APPLICATION OF ANT COLONY OPTIMIZATION

1 Table of Contents

2 Introduction ... 2

3 Interpretation of the specifications .. 2

4 Requirements capture ... 3

4.1 Funtional requirements ... 4

4.2 Non-functonal requirements... 4

5 Use Case View ... 5

5.1 Brain storm .. 5

5.2 Scenario descriptions ... 7

5.3 Class identification .. 8

5.4 crc cards .. 9

5.5 initial statechart .. 10

5.6 Sequence diagram .. 11

6 Analysis Model .. 12

6.1 Attributes (all private) ... 12

6.2 methods .. 13

6.3 sequence diagram ... 14

6.4 Class diagram .. 15

6.5 Statechart diagram... 16

6.6 non-functional requirements ... 16

7 Design Modelling ... 17

7.1 Revist use-case model .. 17

7.2 Sequence diagram ... 17

7.3 Textual description of object to object interaction ... 17

7.4 Subsystems .. 17

7.5 implementation of non-functional requirements .. 17

7.6 Deployment model ... 17

7.7 Legacy issues ... 17

7.8 Reconsider the attributes .. 17

7.9 Reconsider the associations ... 17

7.10 statechart .. 18

7.11 class diagram showing visibilty ... 18

 1

8 Testing .. 19

8.1 Aim .. 19

8.1.1 File loading and data extraction (together with distance calculation and result

storage) .. 19

8.1.2 Greedy algorithm and result accuracy .. 20

8.1.3 Basic aco algorithm and result accuracy .. 20

8.1.4 Improved aco algorithm(s) and result accuracy .. 21

8.1.5 Graphical user interface .. 21

9 Conclusion .. 22

10 References..23

11 Appendix 1 ... 24

 2

1 Introduction

The aim of this project is to apply Swarm intelligence algorithms in an attempt to solve a discrete

optimization problem. Through the use of UML object oriented designing tools and .NET C#

(CSharp) object oriented programming, this report looks at the steps taken to gather information,

analyzing the requirements, extracting the functional needs of the project, laying out a design for

the software and finally, implementing the design. This report is based on four major sections

namely: designing; program implementation; testing and conclusion.

The Ant Colony Optimization (ACO) is a type of Swarm Intelligence algorithm that imitates ant’s

capability to find the shortest path from their food source to their nest and eventually having an

army of ants congregate on this path. This behavior is brought about by the ant’s ability to deposit

pheromones and make probabilistic decisions based on the ones already around. Individual ants

start off from their nest in search for food and go separate paths laying pheromones along the way.

Once a food source is found the ant will make its way back to the nest while continuing to lay

pheromone. The shorter the trip to the food source, the more pheromone left on that path with more

ants following the same path. With time elapsing, pheromone laid starts to evaporate leaving the

path congested with the pheromone from the high number of ants frequently patronizing the

shortest route. Eventually, the rest of the ants abandon their initial paths to use this shorter route

which, of course, has large amounts of pheromone deposited.

The Travelling Salesman Problem (TSP) is a real life problem that is brought about by the need to

find the shortest path between a set number of locations or cities distributed within a wide space.

The aim is to travel to all locations at least once and make it back to the starting point without

backtracking to a previously visited location. As the number of cities in the space increase so does

the variations of how many paths there are to the solution [(|Number of Cities| - 1)! /2]. The

enormous number of possible paths make it impossible to solve the problem through conventional

mathematics. Due to the similarities in nature of the TSP and that of ants needing to find the

shortest path to a food source, ACO algorithm can be applied not to solve the problem but to at

least come up with an optimum solution.

2 Interpretation of the specifications

One way to obtain a solution for the problem without applying ACO is by using Nearest Neighbor

Heuristic (Greedy Algorithm). The Greedy algorithm works by identifying the nearest city from the

list of cities and picking it. The process is repeated until all the cities have been visited. Although it

seems to work, the solution obtained is not optimum therefore a better algorithm need to be used.

The basic ACO is the process whereby an artificial ant with capabilities of remembering where it

had been (memory) and making a decision (probabilistic) of which city to go to next based on an

artificial pheromone trail. The intensity of the trails are directly proportional to the estimations made

by ants to build a good solution, and the trails are updated by the ants [14].

A number of artificial ants determined by the number of cities (N-Cities) available is generated and

each ant is initialized at a unique node within the problem space. Each ant uses the probabilistic

function [15], a User-set initial pheromone amount and inverse of the distances between nodes to

decide which node to go to next. This process is repeated as the ants carry out their individual tours

for a set number of times. Once all ants are done, the local pheromone deposit is updated by all

 3

ants using the summation of individual arc deposits Δτij and evaporation constant set between 0

and 1, expressed by:

Τij (t) = (1 – evaporation constant) * τij (t) + Σ Δτij (t) for all ants generated [15].

The above process is repeated 3000 times while using the updated pheromone deposit. Update is

only done at the end of each iteration. Improvements are made to the above algorithm to lead to

improved probabilistic decision making and a different local pheromone deposit method where only

the shortest tour is considered.

3 Requirements capture

A specification sheet is provided for the project with brief descriptions of the Travelling

Salesman Problem, the Ant Colony Optimization, the probabilistic decisions, individual

deposits Δτij, local pheromone deposit functions and a list of characteristics of the

algorithms [15]. The following points are features identified from the documentation:

 Pheromone is updated after a solution is found

 Ants do not exchange

 Pheromone evaporates over a time period less than the time taken for the swarm

to find the shortest path

 Pheromone evaporation is triggered after all ants have arrived at a solution

 Ants make probabilistic decisions using a function

 Concurrent solutions are found by m ants and they all die.

 After an iteration, t is incremented and another set of ants are created

 Each ant finds its own solution

 Global daemon process to observe all Ant behavior

 Amount deposited by an individual ant is added to τij and is proportional to the

quality of the solution

 Pheromone quantity (local) is updated after all the ants have completed their tour

 4

3.1 Functional requirements

C# classes to represent the TSP grid which incorporates information about the intercity

distances [15].

 Accept input or loading of data files i.e. *.tsp files

 Pick (x,y) coordinates from the data files and pick data structure for storage

 Represent coordinate data graphically

 Calculate and store distances between points / nodes based on N-City value

 Associate *.tsp files with N-City value, optimum tour length value and dimension

value

Solver Classes for solvers (Greedy and ACO + Improvements).

 Calculate Greedy algorithm based on loaded data

 Represent greedy algorithm solution on the graphical user interface

 Implement daemon process for monitoring and parameter change

 Calculate basic ACO algorithm based on loaded data

 Restrict N-City < 100 (without improvements)

 Apply 2 Opt local search heuristic

Graphical user interface.

 Display graphic representation of solution

 Select .tsp data file

 Select calculation to perform

3.2 Non-functional requirements

 Display matrix format of node distances

 Restrict node neighborhood to a small number greater than 1 to improve

computational performance

 ACO version 2 through the implemented daemon process update the local

pheromone with the shortest tour of the iteration.

 Probabilistic decisions by a pseudo-random-proportional rule

 2 opt local search heuristic by switching the order of two edges

 Restrict *.tsp file size to a reasonable dimension size

 5

4 Use case view

4.1 Brain storm

Table 4.1 Prioritization of Potential Requirements

Concept Necessity Risk Cost Priority

Accept loading of data files High Med Low Med

Pick x ,y coordinates from the data files and pick
data structure for storage

High Med Low Med

Represent coordinate data graphically Med Low Low Med

Calculate and store distances between points High High Med High

Associate *.tsp files with N-City value, optimum tour
length value and dimension value

Med Med Low Med

Calculate Greedy algorithm based on loaded data High Med Med Med

Represent greedy algorithm solution on the
graphical user interface

High Med Low Low

Implement daemon process for monitoring and
parameter change

Med Med Low Med

Calculate basic ACO algorithm based on loaded
data

High High High High

Represent basic ACO algorithm solution on the
graphical user interface

Med Med Med

Restrict N-City < 100 (without improvements) Med Med Low Low

Apply 2 Opt local search heuristic Low Low Low Low

Graphical user interface Display graphic
representation of solution

Med Med Med Med

Graphical user interface Select .tsp data file High Med Med Med

Graphical user interface Select calculation to
perform

High High Med High

 6

 7

4.2 Scenario descriptions

User:

The user selects a *.tsp file to upload from a collection of data files a well suited data

structure. A graphical user interface represents the relevant information on the scope of

the problem as in; dimension; optimum tour length. This is displayed back to the user

selects the solver to use on the problem including setting initial parameters and variables

before pressing the start button to obtain a solution. Progress of the solution is displayed

back to the user.

Data Controller:

Node x and y coordinates are obtained from the *.tsp files uploaded by the user. Relevant

information associated to the particular problem is passed on to the graphical user

interface. Distance between extracted coordinates is worked out and stored in storage

structures that can be easily indexed and passed on to the Solver / Algorithm applier. The

distance list sorted in descending order to easily determine short distances between the

nodes.

Note: A node is a pair of x and y coordinates corresponding to a point in the problem space

Algorithm Applier/ Solver:

Algorithm applier retrieves coordinate and problem information from Data Controller.

Algorithm applier is split into two subsections that carry out two separate functions on the

distance data.

Greedy Algorithm:

 Access from the list of distances the shortest distance between current node and the

rest of the nodes

 Add that distance to the tour length

 Move to that Node and put the node just departed from to the visited list

 Repeat from the first point until the list is empty

 Once the list is empty go back to the first node

Basic ACO Algorithm:

 User sets the initial pheromone value for all the arcs

 User sets the arc influencing parameter

 The amount of ants to be initialized is equal to the dimension of the file

 Start iteration

 For each ant belonging to ‘m’

a) a node is randomly selected from the list

b) The next node is determined through the probability function (probability

against all the other unvisited nodes)

c) Pheromone for that arc is recorded

 8

d) (b) is repeated until the tour is completed and a solution is found

e) Once all m ants find a solution local pheromone for every arc is updated

and the iteration count is incremented

f) Process is repeated until 3000 iterations are done.

4.3 Class identification

Nouns

User scenario: tsp file, upload, solver, parameters, solution, GUI, storage, problem

information, start button, display

Data Controller Scenario: node, x and y coordinates (Vectors), tsp files, uploaded, GUI,

distance list, storage, solver

Algorithm Applier / Solver scenario: distance list, x and y coordinates (Vectors), current

tour length, visited list, initial pheromone, iteration, arc length parameter, ants, dimension,

next node, unvisited node, probability function, arc pheromone, solution, solver

Potential Attributes

Parameters, Node, X and y coordinates, Current tour length, Previous, node list, Visited

list, Arc length parameter, Ants, Dimension, Next node, Unvisited node, Arc pheromone

Potential Classes

Distance list, Solver

Stereotypical Classes

Boundary: start button, GUI, solution, display, upload

Control: controller

After reconsideration from the list of nouns and stereotypical classes the following are

identified as a minimum set of classes: Controller, Solver and Vectors (x and y

coordinates).

 9

4.4 Crc cards

Table 4.1 Class Responsibility Collaboration Cards

Class: Vectors

Responsibilities Collaborators

The vectors class is responsible for defining the different data
structures that will be used for the solver and controller.

Controller,
Solver

Class: Controller

Responsibilities Collaborators

The controller class is responsible for extracting mathematical problem
information uploaded by the user from a tsp file. It provides the
information to the vectors class to sort and assign to the correct data
structures. The controller will also provide information to the solver
regarding the problem. The controller Displays information to the user

Controller,
Solver

Class: Solver

Responsibilities Collaborators

The solver class holds the bases for the mathematical calculations to
be carried out for the problems. The solver class uses the data
structures from the vector class to perform its mathematical functions.

It also gathers problem information for the controller

Controller,
vectors

 10

4.5 Initial statechart

 11

4.6 Sequence diagram

 12

5 Analysis model

From Vectors Class

Potential attributes: dataFile; dataFileArray; DistanceList; dimension size; arc_deposit;

pheromone_deposit; arc;

Potential methods: SortDistanceList(); CalcDistance();

From Controller Class

Potential attributes: tspfile; dimension; optimum tour length;

Potential methods: LoadTspFiles(); StartSolution(); SelectAlgorithm(); InfoDisplay()

From Solver Class

Potential attributes: initialPheromone; iteration; beta; N_Cities; Pheromone

Potential methods: ProbDecision(); Greedy(); individDeposit(); PheromDeposit();

5.1 Attributes (all private)

Table 5.1 Attributes

Class Attribute Comment

Vectors dataFile file

 dataFileArray Integer Array

 DistanceList Integer Array

 DimensionSize Integer

 arc_deposit Decimal

 pheromone_deposit Double

 arc String

Controller tspfile File

 dimension Integer

 optTourLength Integer

Solver initialPheromone Double

 iteration Integer

 beta Double

 N_Cities Integer

 13

5.2 Methods

Table 5.2
Methods

Class Method Comment

Vectors

 SortDistance() Sort the distances obtained from
CalcDistance() in descending order

 CalcDistance() Calculate distances between all the nodes

Controller

 LoadtspFile() Load the tsp file and extract problem
information and data for use with calculations

 StartSolution() Start generating a solution after a tsp file has
been loaded and an algorithm is selected

 SelectAlgorithm() Select an algorithm to use to solve the
problem based on the tsp file loaded

 Reset() Reset the interface for further operations

 InfoDisplay() Displays problem information and solution

Solver

 ProbDecision() Determine the next city to visit based on the
probabilistic function and available
DistanceList

 Greedy() Performs the greedy algorithm of picking the
next city to go by picking the shortest distance
from the distance list

 IndividDeposit() Calculates deposits done by individual ants
per arc

 PheromDeposit() Calculates the final pheromone deposit from
the accumulated values from all ants at the
end of an iteration

 BasicACO() Performs the task of running and monitoring
ProbDecision(), IndividDeposit(),
PheromDeposit() and make sure they are run
in a desired ordered to obtain results.

 14

5.3 Sequence diagram

 15

5.4 Class diagram

 16

5.5 Statechart diagram

5.6 Non-functional requirements

 Display matrix format of node distances

 Implement that the node subset (neighborhood) can be between the range of 4 and

10 to improve computational performance

 ACO version 2 should be implemented to update the local pheromone with the

shortest tour of the iteration.

 17

6 Design modelling

6.1 Revisit use-case model

The design meets the minimum requirements necessary to test and implement.

6.2 Sequence diagram

The sequence diagram has already had its qualifiers applied.

6.3 Textual description of object to object interaction

The controller which is part of the interface accepts input in the form of *.tsp files. The user

selects an algorithm to perform a calculation. The interface displays a graphical

representation of the solution with the optimum tour length

The vector class stores the x and y coordinates obtained from the *.tsp file, and stores the

distances generated

The Solver class contains all the methods necessary for the calculations. Inheritance has

been kept to a minimum to reduce complexity of implementation.

6.4 Subsystems

There are no subsystems required

6.5 Implementation of non-functional requirements

The ACO improvements will be applied later on in the testing stages through existing

function alterations

6.6 Deployment model

Algorithms will be run sequentially due to the need to update a local file every iteration so

iterations cannot be run in parallel. So the Controller class will be deployed on a single

processor

6.7 Legacy issues

The software will be developed on a .Net Framework which is constantly updated so there

will not be any legacy issues

6.8 Reconsider the attributes

They have been dealt with in the Revisited Class Diagram

6.9 Reconsider the associations

Relationship between Vectors and Controller class remain the same, however that of

Solver and Controller have changed to a bi-directional association as well to keep things

simple.

 18

6.10 Statechart

No further revisions required

6.11 Class diagram showing visibility

Methods and attributes have been relocated within the classes to keep class

dependency at a minimum.

 19

7 Testing

7.1 Aim

Software has been implemented and now needs to be checked for proper operation. Unit

test is performed to ensure that all the subsystems that make up the software as a whole

are working properly. The subsystems of this software can be named as: File Loading and

Data Extraction; Distance Calculation and Result storage; Greedy Algorithm and Result

Accuracy; Basic ACO Algorithm and Result Accuracy; Graphical User Interface

Functionality. To make testing easier and quicker a custom *.tsp of Dimension 5 and

Optimum tour length rounded to 14 has been created with 5 x coordinates and

corresponding y coordinates. Calculations of the Optimum tour length for the file have

been done on paper and are attached to Appendix 1.

7.1.1 File loading and data extraction (together with distance calculation and result

storage)

The file loading and data extraction is tested by opening the source *.tsp file using notepad

and comparing its contents to those of the same file opened by our software being tested.

The screens are compared side by side. And the results are satisfactory for this file (more

test attached to Appendix 1

 20

7.1.2 Greedy algorithm and result accuracy

Current Tour Length is the result returned which is identical to that of the worked out sheet

7.1.3 Basic Aco algorithm and result accuracy

BasicACO returns the same value as greedy

 21

BasicACO on bigger file with larger dimension

The results improved so far from greedy

7.1.4 Improved Aco algorithm(s) and result accuracy

7.1.5 Graphical user interface

The graphical user interface is tested concurrently with the various algorithms and data

loading and storing tests.

 22

8 Conclusion

The file loading of the software and sorting returned results that met the user requirements

with the exception of files with coordinates of more than four decimal places. Limitations

also include files with dimensions larger than 3496.

Distance calculation and result storage satisfied user requirements providing a storage

and indexing system that is easy to use , holds multiple lines of a node’s information such

as distance, node number, next node, and x and y coordinates for both current and next

in the same indexed location.

The greedy algorithm performs as expected (sub optimal) and returns results that are far

from optimal but still within an acceptable range due to the nature of the algorithm. This

proves that the algorithm has been implemented correctly but does not change the fact

that the solution is not ideal.

Basic Aco algorithm initializes and returns optimal length for the 5 dimension test file giving

the impression that its implementation was correct but however if a larger file of about 29

dimension size is loaded and solution is initialized the amount of time taken to generate

results are very long with the result being better than greedy but not close to optimal. This

behavior of slow solution generation has been experienced throughout the rest of the Aco

improvement versions making it extremely hard to determine if the implementation was

done correctly and an optimum solution is achieved. This slow performance to run through

the 3000 iterations shows a flaws in the implementation of the algorithms. A factor that

was considered was the arcs upon which individual ants deposit pheromone is treated as

a uni-directional deposit and the reverse of it is a completely different arc. An adjustment

was done to add them both together and then update based on the local pheromone but

the results where unpredictable and pheromone deposits rapidly lead to infinite values.

This proves that the implementation has to be revisited and adjusted to get accurate

results and less processor hungry solutions.

The graphical user interface was not complete with a lot of software lagging bugs that

were not addressed due to time constraints. Overall besides the requirements being met

in the earlier stages the overall results suggest the Aco algorithm should be revisited and

re-implemented to have it working correctly and obtain better results.

 23

9 References

 [1] - Reading a text file using OpenFileDialog

http://stackoverflow.com/questions/16136383/reading-a-text-file-using-openfiledialog-

in-windows-forms

[2] - C# 2010 for Programmers (4th Edition) (Deitel Developer Series) by Paul Deitel,

Harvey M. Deitel

[2.1] – Chapter 17 Files and Streams

[3] - http://csharp.net-informations.com/collection/list.htm

[4] - http://stackoverflow.com/questions/7318284/delete-list-of-structures-by-field (List

of Structs)

[5] - http://stackoverflow.com/questions/18890152/how-to-return-struct-from-function-

in-c

[6] - http://stackoverflow.com/questions/3360555/how-to-pass-parameters-to-

threadstart-method-in-thread (Passing parameters to threads through functions)

[7] - http://www.dotnetperls.com/concurrentdictionary (ConcurrentDictionary)

[8] - http://www.dreamincode.net/forums/topic/73035-comparing-4-numbers-and-

finding-the-large-one/ (Number comparison)

http://stackoverflow.com/questions/16136383/reading-a-text-file-using-openfiledialog-in-windows-forms
http://stackoverflow.com/questions/16136383/reading-a-text-file-using-openfiledialog-in-windows-forms
http://stackoverflow.com/questions/16136383/reading-a-text-file-using-openfiledialog-in-windows-forms
http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Paul+Deitel&search-alias=books&text=Paul+Deitel&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Harvey+M.+Deitel&search-alias=books&text=Harvey+M.+Deitel&sort=relevancerank
http://csharp.net-informations.com/collection/list.htm
http://stackoverflow.com/questions/7318284/delete-list-of-structures-by-field
http://stackoverflow.com/questions/18890152/how-to-return-struct-from-function-in-c
http://stackoverflow.com/questions/18890152/how-to-return-struct-from-function-in-c
http://stackoverflow.com/questions/3360555/how-to-pass-parameters-to-threadstart-method-in-thread
http://stackoverflow.com/questions/3360555/how-to-pass-parameters-to-threadstart-method-in-thread
http://www.dotnetperls.com/concurrentdictionary
http://www.dreamincode.net/forums/topic/73035-comparing-4-numbers-and-finding-the-large-one/
http://www.dreamincode.net/forums/topic/73035-comparing-4-numbers-and-finding-the-large-one/

 24

[9] - http://stackoverflow.com/questions/9570110/concurrentdictionary-addorupdate-

by-predicate (ConcurrentDictionary AddOrUpdate by predicate)

[10] - http://stackoverflow.com/questions/282118/togglebutton-in-c-sharp-winforms

(Simple toggle button)

[11] - https://www.youtube.com/watch?v=r1FbKiHYHcw&list=PLkJzKYGRU_tL-

QtyeV9Y_8AzTXw2tVPdC&index=11 (Parallel Programming)

http://stackoverflow.com/questions/10120693/c-sharp-search-text-file-return-all-lines-

containing-a-word

[12] - http://stackoverflow.com/questions/11322841/button-tip-when-mouse-is-over

(Button tip on mouse over)

[13] - http://www.albahari.com/threading/ (Threads)

[14] - (IMAGE EDGE DETECTION USING ANT COLONY
OPTIMIZATIONALGORITHM, Section 2.2)

[15] – Object Oriented Programming Using C#: Swarm Intelligence Assignment 2014
– 2015 - Dr M. Spann

[16] - http://msdn.microsoft.com/en-us/library/w34xb12c%28v=vs.110%29.aspx

(Draw custom dotted lines)

[17] - http://stackoverflow.com/questions/5730828/c-sharp-drawing-circles-in-a-panel

(Draw dots)

10 Appendix

5 dimension test data calculation

http://stackoverflow.com/questions/9570110/concurrentdictionary-addorupdate-by-predicate
http://stackoverflow.com/questions/9570110/concurrentdictionary-addorupdate-by-predicate
http://stackoverflow.com/questions/9570110/concurrentdictionary-addorupdate-by-predicate
http://stackoverflow.com/questions/282118/togglebutton-in-c-sharp-winforms
https://www.youtube.com/watch?v=r1FbKiHYHcw&list=PLkJzKYGRU_tL-QtyeV9Y_8AzTXw2tVPdC&index=11
https://www.youtube.com/watch?v=r1FbKiHYHcw&list=PLkJzKYGRU_tL-QtyeV9Y_8AzTXw2tVPdC&index=11
http://stackoverflow.com/questions/10120693/c-sharp-search-text-file-return-all-lines-containing-a-word
http://stackoverflow.com/questions/10120693/c-sharp-search-text-file-return-all-lines-containing-a-word
http://stackoverflow.com/questions/11322841/button-tip-when-mouse-is-over
http://www.albahari.com/threading/
http://msdn.microsoft.com/en-us/library/w34xb12c%28v=vs.110%29.aspx
http://stackoverflow.com/questions/5730828/c-sharp-drawing-circles-in-a-panel

 25

More test data for File Loading and Data Extraction (together with Distance Calculation and

Result storage)

 26

ERROR FROM dj38.tsp

FILES BIGGER THAN 3496

 27

MORE FROM GREEDY

 28

