ELECTRONIC, ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITYOF
BIRMINGHAM

Object Oriented Programming Using C#
Assignment 2014-15

Swarm Intelligence

Student name: Guanshen Yan
Student Number: 1481476

Abstract

The Travelling Salesman Problem (TSP) a challenging discrete optimization problem. Several
methods can be used to solve this problem. And Greedy and the ant colony optimisation (ACO)
algorithm are two of them. In this project, | need to solve the Travelling Salesman Problem (TSP)
via programming the code including two methods: Greedy and the ant colony optimization (ACO)

algorithm, and a GUI need to be built to display key information and results.

CONTENTS

Lo INEFOAUCTION ..ottt bttt b e bbbt et e et be b e sa s e 1
1.1 Greedy algorithm ..o e 1
1.2 The ant colony optimisation algorithmc.cceeieiiiieiineceeeee e 2

1.2.1 T 1od 10| 0] 1T USRI 2
1.2.2 Application of ACO algorithm t0 TSPcccoviiieiiceeeeeeeeeeee e 3

2. DBSION ..ottt h b et h e h e bt bbb a et et et a e aeebenheenenre s 5
2.1 SPECITICALION. .. ettt ettt ettt b e bt b et bttt se bbb e nes 5
2.2 USE-CASE MOUEI ...ttt 5

2.2.1 USE-CASE TIAGIAM.....ccuieiiitieeieie ettt ettt e e e e e beste e s e bessaesesreenseseeesnens 5
2.2.2 SCENATNTO DESCIIPTION ...ttt sttt ebe e nee s 6
2.2.3 Class TAeNTITICATIONo.viuiiiiriiieiee et 6
224 CREC CANUS ...ttt ettt sttt b ettt et eseeaeebenaenes 7
2.25 INTEraction DIAQIAIMccoccvieeieiiceeeeceeee ettt ettt ettt e sbeebaebeereenes 9
2.2.6 State Chart DIAgraM........cccooiieeeceeeeeeee ettt te s aesteeaeens 10
2.3 ANAIYSIS MOEL ... 11
231 ATEFIDULES ...t 11
2.3.2 IMIEENOTS. ...ttt 12
2.3.3 SEOUENCE DIAGIAM.....coivieieiecteeesteetete ettt st e et be b et e e e e tesbaenaesteennens 13
2.3.4 ClaSS DIAQIAIM ..oovieiieiecieeiecie ettt ettt e st e e e steste e s et e sbeesbesbeesaessesreessestenneans 14
2.35 State Chart DIAgramM........ccocieeeceseeere et te et ae st seesaesseessesressnens 15
2.4 DeSIgN MOGEIIING.....ceioiieieieieeees ettt ettt s re s e besseeaesneesaesreeneens 16
2.4.1 Textual Description of Object to Object Interactionccccceeeeveeveeieeceeseeneenen. 16
2.4.2 Class diagram showing VIiSiDIITYcccooveiiiiiceiiceeececeeee e 17

3. Implementation and tESTING........ccovevieiiiieieceee ettt e besbeereebeereenes 18
3.1 Selecting and 0pening tSP File......ccocieeereeieiceeeee e 18
T2 AN o] o] AV 1 aTo JF= 1L o 11] o RS ORRSSRP 20

3.2.1 Greedy AIGOFTTNM ...ttt st s reeaeens 21
3.2.2 AACO SOIVET .ttt b e 21
4. CONCIUSION ...ttt ettt b et b et bt 22
RETEIEICE ...ttt b ettt b et bbbttt b et na e 23

LIST OF FIGURES

Figure 1A. ants in a pheromone trail between nest and food without obstacle; B. an obstacle in
the trail; C. ants find two paths by their own; D. pheromone density helps ants to find the

SNOFTEE PALN ...ttt r e 2
Figure 2 Process of ACO algorithimooiiiiiiiiei s 4
Figure 3 USe-Case DIAQIamccccuiiiiieiiieeie ettt sttt e et e be et e stesteetesneennenre e 5
Figure 4 Class Diagram (STErEOLYPES)....cc.iiiiiireieieisiinie sttt sttt sttt 7
Figure 5 INteraction DIAGIAMc.coviiiiiiieieree et nnen e 9
Figure 6 State Chart DIAgIamcccoiiiiiiiie e sttt a e st e te e sresneesresre s 10
Figure 7 Analysis Model SeqUENCE dIiagram..........ccveieiiiiieieiiese s sre e sne s 13
Figure 8 Analysis Model Class DIagram...........ccoiiiiirierieieeeieise st 14
Figure 9 Analysis Model State Chartcocoiiiiiiiieee e 15
Figure 10 Analysis Model Class Diagram showing VisibDilityccccoovviiiiiiiiiecce e 17
FIQUre 11 The GUI O .ottt nnen s 18
Figure 12 Clicking "File" BUTTONccooiiiiiiiiiicie e 19
Figure 13 The window for choosing file after clicking "Open File'..........c.cccovviiiiciiieceiee 19
Figure 14 GUI displays information...........cccccv oot 20
Figure 15 Clicking "TSP File' BUTTONcoiiiiiiiic e 20
FIgUIe 16 GIreeAY SOIVENc..iieeie ettt sttt s be e be s ae e s e e beestesteeneenresre s 21
FIQUIE 17 ACO SOIVEN ..ottt sttt et be et e b e s beesb e besneesresbeeseesresteentenre s 22
LIST OF TABLES

Table 1 Class Responsibilities Collaboration Cards............ccouvriiiiiiinineeeese e 8
Table 2 ATtributes Of the SYSTEIMov i 11
Table 3 Method USEd IN SYSTEMcuiiiiieicce et sbe et be s ae e re e 12

1. Introduction

In 1759, Euler had a problem in moving a knight on a chess board. The problem was that the
knight must be moved to every position on the board but exactly once on each position. This is

the first sample of the travelling salesman problem.[1]

TSP is an idea to find a tour which visits all each city only once and returns to the starting city,

and the length of the tour must be minimum.

The symmetric travelling salesman problem can be represented in mathematical way as follows:
Assume a graph G (N, E) which is comprising nodes and arcs which connects those all nodes. N
and E are two groups of nodes and arcs connecting all nodes of N. d;; is defined to represent the
length between city i and j which are included in N. The symmetric travelling salesman problem

means that the distance is symmetric: d;; = dj;.

Many different methods can be used to solve the travelling salesman problem, but I just used two

of them to do this. They are Greedy and the ant colony optimisation (ACO) algorithm.
1.1 Greedy algorithm

Greedy algorithm is a doable method which can be implemented to the travelling salesman

problem to get the solution.

Greedy is a simple algorithm to calculate the distance between the starting city and all other cities,

and select the nearest unvisited city as the next city until all cities are in the tour.

For example, there are four cities. City 1 is the starting city, and we figure out that the distance
between city 1 and city 2 is 10; the distance between city 1 and city 3 is 13; the distance between
cityl and city 4 is 8. So city 4 is the nearest city to city 1, and we choose city 4 as the next city.
Now the unvisited city is city 2 and city 3. After the calculation, we know the distance between
city 4 and city 2 is 6; and the distance between city 4 and city 3 is 10. Hence, city 2 is the next

city. There is one city unvisited. So city 3 is the next one to city 2, and the distance between city 2

ancity 3 is 12. The tour is a close tour, so it must be back to city 1. As we calculated before, the
distance between city 1 and city 3 is 13. In this example, the order of the cities in this tour is city
1, city 4, city 2, city 3, then back to city 1, and the total minimum lengthis8 + 6 + 12 + 13 =

39.

Although the Greedy algorithm can give us the solution to the TSP, the solution is not always

best.

1.2 The ant colony optimisation algorithm

As we mentioned before, the Greedy is not always best, though it can give us solution. Hence, |

use another algorithm, called the ant colony optimisation (ACO) algorithm.
1.2.1 Background

This algorithm is based on the way real ants using in their hunt for food. There is no direct
communication between ants. They communicate with others via pheromone, which is an indirect
and efficient way to contact other large number of ants. According to the pheromone, ants will
make decision to move through which route. Every ant makes their own decision to go in which
direction. But the density of pheromone in the route will change the possibility of ants choosing
this route. The stronger the pheromone density, the higher possibility is. In addition, the

pheromone density is related to the length of tour. The shorter the tour, the stronger the density is.

A B
Food M So Hk i e Nest Food __ e ¥ e e Nest
M e e ol ol i 7 M
M
= e o T
Food e e w ’_‘ g Nest Food # * Nest
oMt ot o L) b
> U »
ek =

Figure 1A. ants in a pheromone trail between nest and food without obstacle; B. an obstacle in the trail; C. ants find
two paths by their own; D. pheromone density helps ants to find the shorter path

(2]

The artificial ants were used to solve discrete optimisation problems are different from the real
ants. They can move between discrete adjacent states, and they can remember which state they
have been. For that, they can visit every state in their tour once and only once. For artificial ants,
they deposit an amount of pheromone, and the pheromone is deposited unless the solution is

found. But for real ants, the pheromone is deposited as they go along.

In this algorithm, t,,,, iterations are performed, and m ants are created and they build solutions
after they die in each iteration. Then going into next iteration, a new set of ants are created and
find solutions again. In this process, the pheromone will be accumulated on each route, and the
new sets of ants make decision based on the density of pheromone. There is another feature of

pheromone. The pheromone will be evaporated after each iteration.
1.2.2 Application of ACO algorithm to TSP

Assuming that an arc (i, j) connects city i and city j. The pheromone deposited on this arc (i, j)
can be defined as 7;;(t), and t is the index of the current iteration. In each iteration, this quantity

of pheromone will be update by all ants when the tour has been completed.

As | said before, the pheromone density on each path will impact the possibility of ants choosing

the path. Hence, the possibility can be represented as follow:

B
I i7100) | L) M k
Pij = Si=n;[tu®]1nal? J & N; El

The meaning of Nik is the group of unvisited cities, when the ant k at city i. In this equation,

nij = 1/d-- and d;; represents the length between city i and city j. f is the parameter which
1

controls the effect of length of arc over the deposited pheromone. If § = 0, the algorithm will be
stagnation when a route is chosen and amplified. In this situation, all ants will follow this route.
When 3 is greater than O, the length of arc and the existing pheromone will be combined to

calculate the local possibility.

When all ants complete their tour, the pheromone deposited by each ant will be added into local

accumulated pheromone.

¢ if (i,)) € T*(t)
ATi(t) = /Lk(t) k=1..m (2)[3]

0 if (i,j) € T*(t)
In this equation, Q is a constant, T*(t) is the tour which includes the visited cities in sequence,

and L¥ is the length of the tour.

At the same time, pheromone evaporation is triggered. The quantity of the pheromone will
evaporate with a certain rate p. Hence, the quantity of pheromone left before next iteration starts

can be represented as follow:

Q
Tij t+1)=(>010- p)Tij) + Yants k which use edge (i,j) Tk (3)

where m is the number of ants and the value of p is between 0 and 1. Normally, when t,,,, , B

and p are set as 3000, 7 and 0.5 separately, we can get a good result.[lab sheet]

In general, the ACO algorithm can be represented in following figure.

t=0 t=1 s t=n
E E E
[ﬂlnts] 10 ants UintsT T.\‘I ants
D

D D
d=1 /. P=0d=u.5 I]Ints/P:u P=Z‘NJ ants l}an/ . ‘Nants
H C H H

P=0 P=0 =10 P-Z}/ P=M
d=1 d=0.5 10 ant 0 ants 0 ant M ants

B B
l Tzo ants Ln ants
A A A

{a) (b) {c)

Figure 2 Process of ACO algorithm

(4]

4

2. Design

I designed the system by using unified modelling language.
2.1 Specification

In this system, Greedy and the ant colony optimisation algorithm are implemented to solve the

travelling salesman problem. User can choose tsp file and the solver on interface, and the solver
can figure out the shortest route. The interface can display all information which included in tsp
file, such as file name, number of cities and optimum route length, and it also displays all results

figured out by solvers and maps the route.
2.2 Use-case model

Use-case model is a way to define requirements and added value scenarios of usage, and provide

the understanding of the interaction between user and system.

2.2.1 Use-case diagram

select tsp file — — — — <<extend>> — — — — read file

<<include>>

% I

<<include>>

<<include>>"

select algorithm

<<include>>

the ant colony optimisation
algorithm

display name

~
~
-
-
~
-

<<include>> dlsplay cities

_<<include>>

Displayboard SEkekeletelel <<include>> — — — — — — = display the number of cities

AN N <<include>>_ _

N N > ~_ T - —
SN N <<include>> display the optimum route length
~ S~

<<include>>
~

” -
N
RN map current route
- N
N
N
display current route length

Figure 3 Use-Case Diagram

5

2.2.2 Scenario Description

User: Before running this system, user need to select a tsp file by clicking file button.
And system can read the data in this file. User can make a decision to select
which algorithm to solve the travelling salesman problem. Two algorithms can be
chosen on interface by clicking solver button, including Greedy and the ant
colony optimisation algorithm. Greedy is the way to figure out the solution by
calculating the length between each city to find the nearest city. The ACO
algorithm is another way to find the best route according to the pheromone on
each route. When user selects an algorithm, the system starts running to find the

solution to the travelling salesman problem.

Display board: After the process, all information and results will be displayed on display board,
including the name of file, cities, number of cities, the optimum route length and
the current route length. In additional, the current route will be mapped on display

board.

Default Action: If user chooses another tsp file when the system is running, this process will stop
immediately and the information of the new file will be displayed on display

board.

2.2.3 Class Identification

Nouns:

User, Tsp file, Algorithm, Display board, Button, Code.

Stereotypical classes:

Boundary: Buttons, Display board
Analysis: Algorithm, TSP file

Control: Solver

I can minimise the set of classes as: Menu, Display board, Code.

y

Menu

Code

E\
@

Display board

Figure 4 Class Diagram (Stereotypes)

2.24 CRC Cards

I describe the responsibilities and collaborators of each class by using CRC Cards.

Class: Menu

Responsibility

Collaborators

Menu class is responsible for clicking button to
choose the tsp file and algorithm, reading the
datain the file, and calling the selected
algorithm to figure out the solution to travelling
salesman problem.

When the new tsp file is chosen, the process
which is running will be stopped and the
information of new tsp file will be displayed on

display board.

Code, Display board

Class: Display board

Responsibility

Collaborators

Display board class is responsible for
displaying the information which is included in
tsp file after the system reading the file, such as
the file name, cities, number of cities, and the
optimum route length. The display board also
display the results which are figured out by
program, such as the current route, the length

of current route.

Code, Menu

Class: Solver

Responsibility

Collaborators

The code class is responsible for loading the
data in the tsp file selected by user, using the
selected algorithm to figure out the solution to
travelling salesman problem, and calling the
results which be figured out to display on the

display board.

Menu, Display board

Table 1 Class Responsibilities Collaboration Cards

Interaction Diagram

2.2.5

|
l¢——— snsai eydsip

00V [[D

0DV P2 RS——

|
|
|
|
| uonn|os pulj 0y 0DV Suisn
|
|
|
|
|

A

Apaaig ||ea.

Apoauo 19985

9|l pea

2|1y ds) 30325

Figure 5 Interaction Diagram

This diagram represents the relation and behaviour between each class and user.

2.2.6 State chart Diagram

papapsa

q 3|y MON

Suiuuns wid3sAs

papa|asaq
wiyos(e g 3|14 dSL MIN

9|14 98euey

pake|dsip 9 s}NsaJ pue uonewIoyul ||y

0o paindiy s3nsay

uonew.oyul Aeidip

314 peay
314 IS

pa3[as aq wWyylogje oN

/Adw3 asn a4

Figure 6 State chart Diagram

The state changing of the system can be represented as the figure above.

10

2.3 Analysis Model

At this stage, | need to analysis this system from the perspective of the designer. If we consider

about the system form the internal view, it is more helpful for us to design the system. It can tell

us how the function to be realised.

2.3.1 Attributes

The attributes of each class are listed in the following table:

Class Attribute Comment
Menu ButtonPress Boolean
Dataload Boolean
Algorithmchoose Boolean
Display board City Status
CityName String
CityNumber Integer
CurrentRoute Status
OptimumRouteLength Integer
CurrentRouteLength Integer
Solver TSPFile Integer
Algorithm Greedy/ACO

Table 2 Attributes of the system

11

2.3.2 Methods

Methods are used in each class are listed in the following table:

Class

Method

Comment

Menu

PressFileButton()

PressAlgorithmButton()

ReadFile()

CallAlgorithm()

Display board

CallFileName()

CallCityCoordinate()

CallCityNumber()

CallOptimumRouteLength()

CallCurrentRoute()

CallCurrentRouteLength()

Display()

Display information and

results

Map()

Map cities and route

Solver

RunAlgorithm()

Run the algorithm which is

selected by user in the menu

ReturnResult()

Return results

Table 3 Method used in system

12

The sequence diagram includes triggers, parameters and some detail needed.

2.3.3 Sequence Diagram

()dew

I
-
I
G
I
I
()Aeydsip _||Vw
I
N
I

|c£mcm. s1noyuaiim|e

L ()amnoyaumje
I
———()y18uatePInoywnuwido|ed
I
_|§Qeszzo__mu

(Juonewuoyul/nsayuiniay

_ ()=1eUIpI00DAID|[BD

P ()3wen|e

(JwyaoS|yuny

(Jwyao3)v|ied

Figure 7 Analysis Model Sequence diagram
13

(Juoringwynio jyssaid

I
(Jondpeay I
|
I

(Juoringa|idssaid

2.3.4 Class Diagram

:Solver :Menu

Algorithm: boolean ButtonPress: boolean

TSPFile: integer <>— Dataload: boolean

Solver() AlgorithmChoose: boolean

~Solver() Menu()

RunAlgorithm() ~Menu()

ReturnResult() PressFileButton()
PressAlgorithmButton()
ReadFile()

CallAlgorithm()

:Display board

City: boolean

CityName: string

Citynumber: integer
CurrentRoute: boolean
CurrentRoutelength: integer
OptimumRoutelLength: integer

Display board()

~Display board()
CallFileName()
CallCityCoordinate()
CallCityNumber()
CallOptimumRoutelength()
CallCurrentRoute()
CallCurrentRoutelength()
Display()

Map()

Figure 8 Analysis Model Class Diagram

14

2.3.5 State Chart Diagram

The state chart in analysis model represents the state changing and the behaviour in each state.

Do: Wait()

PressFileButton(}
PressFileButton()

Solver Running

Data Loading

. * Do: RunAlgorithm()
Do: Read Flle() PressAlgorithmButton () L ReturnResult()

CallName/CallOptimumRoutelength/
CallCityCoordinate/CallCityNumber()

display board

CallCurrentRoute/CallCurrentRouteLength()

ld

Do: display() [
map() J

PowerOff()

) 4

Figure 9 Analysis Model State chart

15

2.4 Design Modelling

After analysing, | need to draw a physical and implementation blueprint. In this stage, the design

must be in logic and in detail.

For the Use-Case, all requirements are met by the design. And the design has added the principal
qualifiers already as well. There are no subsystem required in a simple design. However, some
non-functional requirements need to be implemented with a method in the solver class to read the
coordinate of cities and the commands from Menu. The solver | built is implemented on a single
processor in development model. All attributes are incorporated in the class diagram. In additional,

according to the analysis, the revisions of the state chart are not required.

2.4.1 Textual Description of Object to Object Interaction

The Menu class acts as an interface between user and system and send information of tsp file to
display board. User can select file and algorithm in this class, and solver can get the command

from menu to read file and choose algorithm.

The solver class uses the algorithm selected by users to get the optimum route form the tsp file,

and return the result to display board.

The display board class is an interface to call information of the file and the results from solver

and show them to user.

16

2.4.2 Class diagram showing visibility

:Solver ‘Menu

-Algor.ithr.n: boolean -ButtonPress: boolean
-TSPFile: integer -DatalLoad: boolean
Solver() <— -AlgorithmChoose: boolean
~Solver() Menu()

+RunAlgorithm() ~Menu()

+R.e‘Fur.nResuIt(.) . -PressFileButton()
-Initialise(TspFile: integer) -PressAlgorithmButton()
-PowerOff() +ReadFile()

+CallAlgorithm()

:Display board

-City: boolean

-CityName: string

-Citynumber: integer
-CurrentRoute: boolean
-CurrentRoutelength: integer
-OptimumRoutelength: integer

Display board()

~Display board()
+CallFileName()
+CallCityCoordinate()
+CallCityNumber()
+CallOptimumRouteLength()
+CallCurrentRoute()
+CallCurrentRoutelength()
+Display()

+Map()

Figure 10 Analysis Model Class Diagram showing visibility

17

3. Implementation and testing

I built a code to realise the system designed before, and used the tsp files to test my code if it

works. The GUI is also need to be built for user to control the system.

File TSP Solver Exit

Name : Dimension:

Optimum tour length: Current tour length:

Figure 11 The GUI form

3.1 Selecting and opening tsp file

First thing needs to be done after opening the application is choosing a file which the algorithm

can be applied in.

The file can be selected by clicking the ‘File’ button. After this step, a window appears. User can

choose file from this window.

18

TSP Solver Exit

Name : Dimension:

Optimum tour length: Current tour length:

Figure 12 Clicking 'File' Button

T .« OOP » assignment » C#Assignment » TSP » TSPForm » bin » Debug » Data v O Search Data Pl
Organize + New folder =~ @ ®
<t Favorites Name . Date modified Type Size
B Desktop 7 cadtbitsp 2/17/2011 239 AM TSP File 129 KB
8 Downloads [djz8tsp 1772011 3:44 AM TSP File 2KB
‘5 Recent places [weentsp 1/14/2011 437 AM TSP File 26 KB
_3 nu3496.tsp 2/17/2011 6:09 AM TSP File 95 KB
‘@ OneDrive) qataatsp 1/6/2011 408 M TSP File 6 KB
_3 wl621.tsp 3/21/2011 2:23 AM TSP File 42 KB
*d Homegroup [uyT3a4sp 1/6/2011 408 AM TSP File 20KB
_E| wi29.tsp 1/6/2011 4:08 AM TSP File TKB
18 This PC _E| zi929.tsp 1/6/2011 4:08 AM TSP File 25KB
e‘! Network
File name: || v |
Open | ‘ Cancel |

Figure 13 The window for choosing file after clicking 'Open File'

The file can be opened by double clicking a tsp file, and the cities can be plotted in the picture
box. In additional, the GUI can display the information included in the file. For example, | choose

‘Wi29.tsp’.

19

=) X

File | TSP Solver | Exit
ACO Solver
Greedy Solver
Name: will Dimension: 29 cities
Optimum tour length: 27603 Current tour length:

Figure 14 GUI displays information

3.2 Applying algorithm

After choosing the file, the algorithm needs to be chosen to find the solution to the tsp by clicking

‘TSP Solver’ button.

& x
File | TSP Solver | Exit
ACO Solver

Greedy Solver

Name: widd Dimension: 29 cities

Optimum tour length: 27603 Current tour length:

Figure 15 Clicking "TSP File' Button

20

3.2.1 Greedy Algorithm

Firstly, | test the Greedy Algorithm. This algorithm is easier than ACO algorithm.

Click ‘Greedy Solver’ to start the testing.

File TSP Solver Exit

Name wild Dimension: 29 cities
Optimum tour lemgth: 2Ta03 Current tour length: 36388

Greedy algorithn progress

Figure 16 Greedy Solver

Now, | can see the solution figured out by Greedy. The best route length calculated by Greedy is
36388, and the route display in the picture box is the best route figured out by Greedy. However,

the optimum route length for this tsp file is 27603. There is still difference from optimum route.

3.2.2 ACO Solver

The other algorithm is the ant colony optimisation algorithm. Clicking ‘ACO Solver’ can start the

ACO algorithm to solver the tsp.

X

File TSP Sohver Exit

Name : wizZd Dimension: 29 cities
Optimum tour length: 27603 Current tour length: 29178

ACO algorithm progress

Figure 17 ACO Solver

The route displayed in this figure is the best route figured out by ACO. The length of this route is
29176. Although it is still not an optimum solution, it is better than Greedy. Compared with

Greedy, this algorithm takes longer time,

4. Conclusion

In this project, a system is built for solve the travelling salesman problem. User can control this
system via the interface, including choosing tsp file, selecting algorithm, exiting the system, and
monitoring the information of the file and result figured out by algorithm by mapping and

displaying the route and data. These functions are met in this program.

There are only two algorithms | considered, Greedy and basic ACO algorithm. Both of these two
algorithms can give us solutions to travelling salesman problem, but they do not always give us
the optimum solution. Comparing these two algorithms, ACO algorithm gives the better solution,

but Greedy takes shorter time.

Through this project, | learnt how to use the visual studio to build this system using C#. And |

also know that how two algorithms work to figure out the solution.

Reference

[1]

[2]

[3]

[4]

A. Benjamin, “Genetic Algorithms and the Traveling Salesman Problem by Kylie Bryant
Genetic Algorithms and the Traveling Salesman Problem by Kylie Bryant,” no. December,
2000.

M. Perretto and H. S. Lopes, “Reconstruction of phylogenetic trees using the ant colony
optimization paradigm.” 2005.

Dr. M. Spann, “Object Oriented Programming Using C# Assignment 2014-15 Swarm
Intelligence.” .

J. Zhao and S. Z. Sun, “Automatic fault extraction using a modified ant-colony algorithm,” p.
2,2013.

23

Appendix (Code)

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.IO;

using System.Ling;

using System.Text;

using System.Threading;

using System.Windows.Forms;

namespace TSPForm

{
public partial class FormTSP : Form
{

private int City;
private double[] xMinMax;
private double[] yMinMax;
private double[,] xy;
private int[] m; // the index of the good path
private double[,] d; //distance between each city
private int[] CitylList;
private double optl = double.PositiveInfinity;
private double boptl = double.PositiveInfinity;
int[,] VisitedCity; //store the city which has been visited by ant
int[,] CitiesTabu;
int[,] CityNoTabu;
int n; //ant number
int TMax = 3000; //the maximum iteration number
double[,] Pheromone; //the amount of pheromone
double[,] eta; // reciprocal of the length of arc(i,j)
double[,] delta;
double[] dk; //the shortest length of the tour which finished by ant k
double alpha = 2.0;
double beta = 7.90; //the relative influence of the arc length over the

previously accumulated pheromone deposit
double r = @.5; //evoraption rate
double PheromoneMin = le-5; // the range of the density of pheromone

double PheromoneMax =30;
public FormTSP()

{
}

InitializeComponent();

[ITTTTI0TTTT 7770777777777 7777777777777777777771171Greedy///////11771177711171177
IITT1TT10 770777077 7777777777717777777771177

private void Greedy()
{
int[] travelledcity = new int[City]; // vector of visited city
double q = double.PositiveInfinity; //the shortest distance between
each city
for (int i = @; i < City; i++)
{
m[i] = o;
CityList[i] = ©;
travelledcity[i] = -1;

24

}
travelledcity[@] = 0;

CityList[travelledcity[@]] = 1;
int minIndex = travelledcity[0];
Value(1l, City - 1);

for (int i = 1; i < City; i++)

{
gq = double.PositiveInfinity;
for (int j = @; j < City; j++)
{
if (d[travelledcity[i - 1], j] < q && CityList[j] == 0)
{
minIndex = j;
q = d[travelledcity[i - 1], jI;
}
}
ProgressBar(i);
CityList[minIndex] = 1;
travelledcity[i] = minIndex;
displayinfo(i, q);
}
optl = 0;
for (int k = 0; k < City - 1; k++)
{
optl += d[travelledcity[k], travelledcity[k + 1]];
}

optl += d[travelledcity[City - 1], travelledcity[©]];
displayinfo(City, optl);
m = travelledcity;

if (pictureBox1.InvokeRequired)

{

Action actionDraw = delegate()
{
double W = pictureBoxl.Width;
double H = pictureBoxl.Height;
double PicX, PicY;
PicX = (double)(W - 30) / (xMinMax[1] - xMinMax[@]);
PicY = (double)(H - 30) / (yMinMax[1] - yMinMax[@]);
SolidBrush RedBrush = new SolidBrush(Color.Red);
pictureBox1.Image = null;
Image imageTSP = new Bitmap(pictureBox1.Width,
pictureBoxl.Height);
Graphics GraphicsTSP = Graphics.FromImage(imageTSP);
GraphicsTSP.Clear(Color.White);
double cityX;
double cityY;
Value(@, City - 1);
Font myFontl = new Font("Hacttenschweiler", 7);
for (int j = @; j < City; j++)
{
cityX = (xy[j, @] - xMinMax[@]) * PicX;
cityY = (xy[j, 1] - yMinMax[@]) * PicY;
GraphicsTSP.FillEllipse(RedBrush, new RectangleF((float)cityX,
(float)cityy, 3, 3));

}

double X1, Y1, X2, Y2;

Pen penLine = new Pen(Color.Black, 1);
Value(1, City - 1);

for (int i = 1; i < City; i++)

ProgressBar(j);

25

(float)Yl), new

new PointF((floa

}

else

(float)cityy, 3,

X1 = (xy[m[i - 1], @] - xMinMax[@]) * PicX;
Y1 = (xy[m[i - 1], 1] - yMinMax[@]) * PicY;
X2 = (xy[m[i], @] - xMinMax[@]) * PicX;
Y2 = (xy[m[i], 1] - yMinMax[@]) * PicY;

GraphicsTSP.DrawLine(penLine, new PointF((float)X1,
PointF((float)X2, (float)Y2));

ProgressBar(i);
}
X1 = (xy[m[@], @] - xMinMax[@]) * PicX;
Y1 = (xy[m[@], 1] - yMinMax[@]) * PicY;
X2 = (xy[m[City - 1], @] - xMinMax[@]) * PicX;

Y2 = (xy[m[City - 1], 1] - yMinMax[@]) * PicY;
GraphicsTSP.DrawLine(penLine, new PointF((float)X1l, (float)Yl),
t)X2, (float)Y2));
pictureBox1l.Image = imageTSP;
¥

pictureBox1.Invoke(actionDraw);

double W = pictureBoxl.Width;
double H = pictureBoxl.Height;
double PicX, PicY;
PicX = (double)(W - 30) / (xMinMax[1] - xMinMax[@]);
PicY = (double)(H - 30) / (yMinMax[1] - yMinMax[@]);
SolidBrush RedBrush = new SolidBrush(Color.Red);
pictureBox1l.Image = null;
Image imageTSP = new Bitmap(pictureBox1l.Width, pictureBox1.Height);
Graphics GraphicsTSP = Graphics.FromImage(imageTSP);
GraphicsTSP.Clear(Color.White);
double cityX;
double cityY;
Value(@, City - 1);
for (int j = @; j < City; j++)
{
cityX = (xy[j, @] - xMinMax[@]) * PicX;
cityy = (xy[j, 1] - yMinMax[@]) * PicY;
GraphicsTSP.FillEllipse(RedBrush, new RectangleF((float)cityX,
3));
ProgressBar(j);
}

double X1, Y1, X2, Y2;

Pen penLine = new Pen(Color.Black, 1);
Value(1, City - 1);

for (int i = 1; i < City; i++)

{
X1 = (xy[m[i - 1], @] - xMinMax[@]) * PicX;
Y1 = (xy[m[i - 1], 1] - yMinMax[@]) * PicY;
X2 = (xy[m[i], @] - xMinMax[@]) * PicX;
Y2 = (xy[m[i], 1] - yMinMax[@]) * PicY;

GraphicsTSP.DrawLine(penLine, new PointF((float)X1l, (float)Yl),

new PointF((float)X2, (float)Y2));

ProgressBar(i);
}
X1 = (xy[m[@], @] - xMinMax[@]) * PicX;
Y1 = (xy[m[@], 1] - yMinMax[@]) * PicY;
X2 = (xy[m[City - 1], @] - xMinMax[@]) * PicX;
Y2 = (xy[m[City - 1], 1] - yMinMax[@]) * PicY;

26

GraphicsTSP.DrawLine(penLine, new PointF((float)X1l, (float)Yl), new
PointF((float)X2, (float)Y2));
pictureBox1l.Image = imageTSP;
}

L1117 77/ACO///77/777717171717177
IITT1TTI07 770770777 771777117777717717
private void ACOAlgrorithm()
{
n = City;
Pheromone = new double[City, City];
eta = new double[City, City];
delta = new double[City, City];
CitiesTabu = new int[n, City];
CityNoTabu = new int[n, City];
VisitedCity = new int[n, City];
dk = new double[n];
for (int i = @; i < City; i++)

{
for (int j = @; j < City; j++)
{
Pheromone[i, j] = 1.0;
if (1 1= 3)
{
etal[i, j] = 1.0 / d[i, j];
}
delta[i, j] = 0.90;
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < City; j++)
{
VisitedCity[i, j] = -1;
CitiesTabu[i, j] = o;
}
VisitedCity[i, @] = ©;
CitiesTabu[i, @] = 1;
}
for (int ic = 1; ic <= TMax; ic++)
{

double Pij = 0;
double PijSum = 0;
double randomPij = 0;
Random randData = new Random((int)DateTime.Now.Ticks & ©x@00OFFFF);
for (int Tc = 1; Tc < City; Tc++)
{
Value(@, n);
for (int iAnt = @; iAnt < n; iAnt++)
{
Pij = 0.0;
PijSum = 0.9;
randomPij = randData.Next(3000) / 3000.0;

for (int iCity = @; iCity < City; iCity++)

{
if (CitiesTabu[iAnt, iCity] == @)

27

try

{
PijSum += Math.Pow(Pheromone[VisitedCity[iAnt, Tc
- 1], iCity], alpha) * Math.Pow(eta[VisitedCity[iAnt, Tc - 1], iCity], beta);

}
catch (System.Exception ex)
{
continue;
}
}
}
for (int iCity = ©; iCity < City; iCity++)
{
if (CitiesTabu[iAnt, iCity] == @)
{
try
{

Pij += Math.Pow(Pheromone[VisitedCity[iAnt, Tc -
1], iCity], alpha) * Math.Pow(eta[VisitedCity[iAnt, Tc - 1], iCity], beta) / PijSum;
if (Pij > randomPij)

{
CitiesTabu[iAnt, iCity] = 1;
VisitedCity[iAnt, Tc] = iCity;
break;
}
}
catch (System.Exception ex)
{
continue;
}
}
}
ProgressBar(iAnt + 1);
}
}
int mk = 9;

boptl = optl;
Value(@, n);
for (int k = 0; k < n; k++)

{
dk[k] = cd(k);
if (dk[k] < optl)
{
optl = dk[k];
mk = k;
}
ProgressBar(k + 1);
}

Value(0, City);
for (int i = @; i < City; i++)
{
m[i] = VisitedCity[mk, i];
ProgressBar(i + 1);

}

Value(@, n);
for (int k = 0; k < n; k++)
{

28

try

{
for (int i = 0; i < City - 1; i++)
delta[VisitedCity[k, i], VisitedCity[k, i + 1]] += 100 /
dk[k];
}
delta[VisitedCity[k, City - 1], VisitedCity[k, @]] += 100 /
dk[k];
}
catch (System.Exception ex)
{
continue;
}

ProgressBar(k + 1);

}

Value(@, City);
for (int i = @0; i < City; i++)

{
for (int j = @; j < City; j++)
{
Pheromone[i, j] = (1 - r) * Pheromone[i, j] + delta[i, j];
if (Pheromone[i, j] < PheromoneMin)
Pheromone[i, j] = PheromoneMin;
if (Pheromone[i, j] > PheromoneMax)
Pheromone[i, j] = PheromoneMax;
}
ProgressBar(i + 1);
}

Value(@, n);
for (int k = 0; k < n; k++)

{
for (int ¢ = 0; c < City; c++)
{
CitiesTabu[k, c] = ©;
if (c > 9)
{
VisitedCity[k, c] = -1;
}
}
CitiesTabu[k, VisitedCity[k, ©]] = 1;
ProgressBar(k + 1);
}

displayinfo(ic, optl);

if (pictureBox1.InvokeRequired)
{
Action actionDraw = delegate()
{
double W = pictureBoxl.Width;
double H = pictureBoxl.Height;
double PicX, PicY;
PicX = (double)(W - 30) / (xMinMax[1] - xMinMax[@]);
PicY = (double)(H - 30) / (yMinMax[1] - yMinMax[@]);
SolidBrush RedBrush = new SolidBrush(Color.Red);
pictureBoxl.Image = null;
Image imageTSP = new Bitmap(pictureBox1.Width,
pictureBoxl.Height);
Graphics GraphicsTSP = Graphics.FromImage(imageTSP);
GraphicsTSP.Clear(Color.White);

29

double cityX;

double cityY;

Value(@, City - 1);

Font myFontl = new Font("Hacttenschweiler", 7);

for (int j = @; j < City; j++)

{
cityX = (xy[j, @] - xMinMax[@]) * PicX;
cityY = (xy[j, 1] - yMinMax[@]) * PicY;
GraphicsTSP.FillEllipse(RedBrush, new

RectangleF ((float)cityX, (float)cityYy, 3, 3));

ProgressBar(j);

}

double X1, Y1, X2, Y2;

Pen penLine = new Pen(Color.Black, 1);
Value(1, City - 1);

for (int i = 1; i < City; i++)

{
X1 = (xy[m[i - 1], @] - xMinMax[@]) * PicX;
Y1 = (xy[m[i - 1], 1] - yMinMax[@]) * PicY;
X2 = (xy[m[i], @] - xMinMax[@]) * PicX;
Y2 = (xy[m[i], 1] - yMinMax[@]) * PicY;

GraphicsTSP.DrawLine(penLine, new PointF((float)X1,
(float)Y1l), new PointF((float)X2, (float)Y2));
ProgressBar(i);

}

X1 = (xy[m[@], @] - xMinMax[@]) * PicX;

Y1 = (xy[m[@], 1] - yMinMax[@]) * PicY;

X2 = (xy[m[City - 1], @] - xMinMax[@]) * PicX;

Y2 = (xy[m[City - 1], 1] - yMinMax[@]) * PicY;

GraphicsTSP.DrawLine(penLine, new PointF((float)X1,
(float)Y1l), new PointF((float)X2, (float)Y2));

pictureBox1l.Image = imageTSP;

¥
pictureBox1.Invoke(actionDraw);
}
else
{

double W = pictureBoxl.Width;
double H = pictureBoxl.Height;
double PicX, PicY;
PicX = (double) (W - 30) / (xMinMax[1] - xMinMax[@]);
PicY = (double)(H - 30) / (yMinMax[1] - yMinMax[@]);
SolidBrush RedBrush = new SolidBrush(Color.Red);
pictureBox1.Image = null;
Image imageTSP = new Bitmap(pictureBox1.Width,
pictureBoxl.Height);
Graphics GraphicsTSP = Graphics.FromImage(imageTSP);
GraphicsTSP.Clear(Color.White);
double cityX;
double cityY;
Value(@, City - 1);
for (int j = 0; j < City; j++)
{
cityX = (xy[j, @] - xMinMax[@]) * PicX;
cityY = (xy[j, 1] - yMinMax[@]) * Picy;
GraphicsTSP.FillEllipse(RedBrush, new RectangleF((float)cityX,

(float)cityY, 3, 3));

}

ProgressBar(j);

30

double X1, Y1, X2, Y2;

Pen penLine = new Pen(Color.Black, 1);
Value(1l, City - 1);

for (int i = 1; i < City; i++)

{
X1 = (xy[m[i - 1], @] - xMinMax[@]) * PicX;
Y1 = (xy[m[i - 1], 1] - yMinMax[@]) * PicY;
X2 = (xy[m[i], @] - xMinMax[@]) * PicX;
Y2 = (xy[m[i], 1] - yMinMax[@]) * PicY;

GraphicsTSP.DrawLine(penLine, new PointF((float)X1,
(float)Y1l), new PointF((float)X2, (float)Y2));
ProgressBar(i);

}

X1 = (xy[m[@], @] - xMinMax[@]) * PicX;

Y1 = (xy[m[@], 1] - yMinMax[@]) * PicY;

X2 = (xy[m[City - 1], @] - xMinMax[@]) * PicX;

Y2 = (xy[m[City - 1], 1] - yMinMax[@]) * PicY;

GraphicsTSP.DrawLine(penLine, new PointF((float)X1l, (float)Yl),
new PointF((float)X2, (float)Y2));

pictureBoxl.Image = imageTSP;

¥
}

private double cd(int k) //function for calculating the current minimum
distance

{

double currentd = 0;

Value(@, City - 1);

for (int i = 0; i < City - 1; i++)
{

ProgressBar(i + 1);

currentd += d[VisitedCity[k, i], VisitedCity[k, i + 1]];
}
currentd += d[VisitedCity[k, City - 1], VisitedCity[k, @]];
return currentd;

}

IITTTTTTIL 7707777777077 777 77777 77777777777777777777777Form////1/7711177171771/77177
I1IT7117777777777771777

//function of the 'File' Button
private void readDataStripMenultem_Click(object sender, EventArgs e)

{
label6.Text = ""; // current route length
label8.Text = ""; //dimension (number of city)
label9.Text = ""; //name
label7.Text = ""; //optimum route length
labell0.Text = ""; //status of solver

OpenFileDialog myFileDialog = new OpenFileDialog();
myFileDialog.InitialDirectory = Application.StartupPath + "\\Data";
XxMinMax = new double[2] { double.MaxValue, 0 };
yMinMax = new double[2] { double.MaxValue, 0 };
if (myFileDialog.ShowDialog() == DialogResult.OK)
{

string strPath = myFileDialog.FileName;

StreamReader streamReader = new StreamReader(strPath);

string Data;

string[] Array;

31

string dataFlag =

no";

int i = 0;

while ((Data = streamReader.ReadLine()) !=

{

}

if (Data.Contains("NAME"))

{

}

Array = Data.Split(':');
label9.Text = Array[1];

if (Data.Contains("Optimum"))

{

}

int si; //starting index
si = Data.IndexOf("is") + 2;
label7.Text = Data.Substring(si);

if (Data.Contains("DIMENSION"))

{

}

if (dataFlag

{

}

Array = Data.Split(':');
label8.Text = Array[1l] + " cities";
City = int.Parse(Array[1].Trim());
xy = new double[City, 2];

m = new int[City];

d = new double[City, City];
CityList = new int[City];

Value(@, City);

= "yes")

Array = Data.Split(' ');
xy[i, ©] = double.Parse(Array[1]);
xy[i, 1] = double.Parse(Array[2]);
if (xMinMax[@] > xy[i, @])
{

xMinMax[@] = xy[i, @];

if (xMinMax[1] < xy[i, @])
xMinMax[1] = xy[i, ©];
if (yMinMax[@] > xy[i, 1])
! yMinMax[@] = xy[i, 1];
if (yMinMax[1] < xy[i, 1])
yMinMax[1] = xy[i, 1];

i++;
ProgressBar(i);

" EOF ")

if (Data.Contains("NODE_COORD_SECTION"))

{
}

dataFlag = "yes";

streamReader.Close();

//Draw city points

Value(@, City);

if (pictureBox1.InvokeRequired)

{

32

Action actionDrawCityPoint = delegate()

{

double W = pictureBoxl.Width;

double H = pictureBoxl.Height;

double PicX, PicY;

PicX = (double)(W - 30) / (xMinMax[1] - xMinMax[@]);

PicY = (double)(H - 30) / (yMinMax[1] - yMinMax[@]);

SolidBrush RedBrush = new SolidBrush(Color.Red);

pictureBoxl.Image = null;

Image imageTSP = new Bitmap(pictureBox1.Width,
pictureBox1l.Height);

Graphics GraphicsTSP = Graphics.FromImage(imageTSP);

GraphicsTSP.Clear(Color.White);

double cityX;

double cityY;

for (int j = @0; j < City; j++)

{
cityX = (xy[j, ©] - xMinMax[@]) * PicX;
cityY = (xy[j, 1] - yMinMax[@]) * PicY;
GraphicsTSP.FillEllipse(RedBrush, new

RectangleF((float)cityX, (float)cityy, 3, 3));

ProgressBar(j + 1);

}
pictureBoxl.Image = imageTSP;
s
pictureBoxl.Invoke(actionDrawCityPoint);
}
else
{

double W = pictureBoxl.Width;
double H = pictureBoxl.Height;
double PicX, PicY;
PicX = (double)(W - 30) / (xMinMax[1] - xMinMax[@]);
PicY = (double)(H - 30) / (yMinMax[1] - yMinMax[@]);
SolidBrush RedBrush = new SolidBrush(Color.Red);
pictureBox1.Image = null;
Image imageTSP = new Bitmap(pictureBox1.Width,
pictureBox1.Height);
Graphics GraphicsTSP = Graphics.FromImage(imageTSP);
GraphicsTSP.Clear(Color.White);
double cityX;
double cityY;
for (int j = 0; j < City; j++)
{
cityX = (xy[j, @] - xMinMax[@]) * PicX;
cityy = (xy[j, 1] - yMinMax[@]) * Picy;
GraphicsTSP.FillEllipse(RedBrush, new RectangleF((float)cityX,

(float)cityy, 3, 3));
ProgressBar(j + 1);

}

pictureBox1l.Image = imageTSP;

}
Value(@, City);
for (int j = ©; j < City; j++)

{
for (int k = 0; k < City; k++)

{
d[Jj, k] = Math.Sgrt((xy[j, @] - xy[k, @]) * (xy[j, @] - xy[k,
e]) + (xy[j, 1] - Xygk; 11) * (xy[3, 11 - xy[k, 11));

ProgressBar(j + 1);

33

//define the progress bar
public void ProgressBar(int BarValue)

{
if (progressBarTSP.InvokeRequired)

Action<int> actionUpdateProgressBar = delegate(int Temp)

{
1

progressBarTSP.Invoke(actionUpdateProgressBar, BarValue >
progressBarTSP.Maximum ? progressBarTSP.Maximum : BarValue);

}

else

{
}

progressBarTSP.Value = Temp;

progressBarTSP.Value = BarValue;

}

//set the value of the progress bar
public void Value(int minValue, int maxValue)

{
if (progressBarTSP.InvokeRequired)

{
Action<int, int> actionSetBarValue = delegate(int minTemp, int
maxTemp)
{
progressBarTSP.Minimum = minTemp;
progressBarTSP.Maximum = maxTemp;

s
progressBarTSP.Invoke(actionSetBarValue, minValue, maxValue);

}

else

{

progressBarTSP.Minimum = minValue;
progressBarTSP.Maximum = maxValue;

}

private void FormTSP_Load(object sender, EventArgs e)

{

label6.Text "
label8.Text "
label9.Text "
label7.Text "
labello.Text = "";

}

//function of the 'Greedy Solver' Button
private void greedySolverToolStripMenuItem_Click(object sender, EventArgs e)
{
labell@.Text = "Greedy algorithm progress";
optl = double.PositiveInfinity;
boptl = double.PositiveInfinity;
Thread threadGreedy = new Thread(new ThreadStart(Greedy));
threadGreedy.IsBackground = true;
threadGreedy.Start();

34

//function of the 'ACO Solver' Button
private void ACOSolverToolStripMenuItem_Click(object sender, EventArgs e)
{
labell@.Text = "ACO algorithm progress”;
optl = double.PositiveInfinity;
boptl = double.PositiveInfinity;
int T = 0;
Thread threadACO = new Thread(new ThreadStart(ACOAlgrorithm));
threadACO.IsBackground = true;
threadACO.Start();

public void displayinfo(int p, double ml)

{
double fImprovement = 0;
if (label6.InvokeRequired)
{
Action<double> 1 = delegate(double sl)
{
label6.Text = sl == 0@ ? "" : sl.ToString("Fe");
}s
label6.Invoke(1l, ml);
}
else
{
label6.Text = ml == 0@ ? "" : ml.ToString("F@");
}
}

////function of the 'Exit' Button
private void exitToolStripMenuItem_Click_1(object sender, EventArgs e)

{
}

Application.Exit();

35

