Swarm Intelligence
Object Oriented Programming Using C#

Matteo De Cicco

ABSTRACT

Implementation of ACO algorithms with application
to the famous Traveling Salesman Problem (TPS).

Table of Contents

Introduction
Problem discussion
Interpretation of the specification

Introduction to UML

Use-case Model
Use-case View
Scenario Description
CRC Cards
Statechart Diagram
Interaction Diagram

Analysis Model
Class diagram
Statechart Diagram
Interaction Diagram

Design Model
Class diagram

Details of Algorithm implementation

Greedy Algorithm
ACO vO0 algorithm
ACO v1 algorithm
ACO v2 algorithm

Account of Structured Testing
TSPData Class Testing
TSPSolver Class Testing

Conclusions

ool U1 W WwWw

Nel

N
NN OO

e
NN

N
[colNoo AN Be W)

N NN
=]

N
NN

Introduction

Problem discussion

The Travelling Salesman Problem is one of the most studied problems with NP-hard
complexity that are still a great field of research in the Computational Theory.
Starting from the second half of the XX° century, theose kind of problems have been approached
with the aid of statistic methods based on natural behaviours. As observed in many situations,
animals with “limited capacities” and no coordinator such as ants, bees and birds, can solve
natural problems, such as finding the nourishment and communicate its position.

Nowadays, in Telecommunication Networks, Data Centers and Big Data Analytics, NP-hard
complexity problems are still at the heart of the optimization problems, where a lot of research
behind this trying to create algorithms that are capable of minimize the efforts and resources
employed.

The aim of this project is to understand the basics on the Swarm Intelligence algorithm and
implement a series of algorithms of the Ant Colony Optimization class in order to find a solution
for the Travelling Salesman Problem, giving back a tour length that covers of all the cities.

Each algorithm implemented will provide a better “intelligence”, based on specific formulas
applications and optimization procedures so that it returns a tour length that is smaller than the
previous ones.

Interpretation of the specification

The data in a TSP can be interpreted as a graph G(N,E) where the N, “the nodes”, represent all
the cities to visit and E, “the arcs”, represents all the distances between those cities.
In this case, we will consider the problem with “symmetrical” data, so the distance d from city i to
city j will be equal to the one from city j to city i : dj = dj;.

The algorithms, that we will apply, derive from the general class of Swarm Intelligence
algorithms introduced before.
In this case, we will base our algorithms on the Ant Colony Optimization class of SI algorithms.
This class of algorithms bases its operations on the behaviour of real “ants” inside a swarm, thus
modelling the capacity of communicate between ants via a “pheromone deposit” event and a
“pheromone evaporation” event. Each colony is made up of a specific number of ants.
Those ants will explore the dataset one by one.

The “pheromone deposit” event is the only way the colony has to interact with all its ants; this
event will takes place only when the first set of ants (the first colony) completes the exploration,
so that the next swarm will find additional information on the dataset and each ant will take
decisions on its path based on that.

The ants implemented are “artificial”, so it means that they have specific characteristic not
related to the real world ants. In particular they have memory of the cities visited and base their
decisions on probability.

k_ [Tij (t)][n,.j]ﬂ

The formula for local probability used is: p;, =—=t—5——=; J€N

z [Tﬂ G)] [77,-1]p g

leN,
OIL' () ifG,j)eT ()
0 if (i, j) e T" (t)

k

i

The amount of pheromone deposited is: A, (t)={ =l.m

The process of pheromone deposit and evaporation is given by: 7, (f) < (1 -p)r,(0)+ ZAT: ®)
k=1

The parameters in the previous formulas change the weight of each element and need to be
chosen during the tuning of the algorithm for improve the “visibility” of the search inside the
exploration space.

The first algorithm implemented is the “Greedy” Algorithm.
Using this algorithm the next city visited is always the nearest one and being a deterministic
algorithm it doesn’t need to be iterated for more than one colony.

The second algorithm implemented is the basic ACO (ACO vO0).
[t implements the formulas previously presented. In order to have a correct behaviour the
process is iterated for more than one colony, so that the pheromone deposit leads to a better
solution than ‘Greedy’.

The third algorithm implemented is the ACO v1, where the pheromone deposit process is
improved with a second process that selects the best sequence of cities and adds an extra amount
of pheromone.

The fourth algorithm implemented is the ACO v2.
In this algorithm, the visibility of the exploration space is improved with a pseudo-random rule
based on the analysis of the local probability.

Introduction to UML

The process of modelling this project using UML is achieved in three consequent phases; each
of them is a more accurate analysis of the specifications using different views.
In this case, the package of specification received was really detailed and its context was clearly a
‘domain modelling’.
The requirements capture was then based on an analysis of the problem domain.

Functional Requirements identified:
- the System needs to able to take a human readable file as input
- it must show essential information of the problem
- it must show the results of the computational algorithm

The specifications on the GUI were not considered as part of the software design, however they
have been a useful tool for understanding the expected output of the system.

Despite the functional requirements were few and simple, the non-functional ones reflected the
very technical nature of this project, such as optimized data structure for fast computation,

scalability and speed of response.

After a phase of Requirement Capture, the modelling was carried out through the Use-Case
Modelling, the Analysis Modelling and then the Design Modelling.

Use-case Model

Use-case View

Create
Dataset

Upload Y™~

USER

Launch
Algorithm

Select
Algorithm

Scenario Description

The user selects a file from the computer. The system reads the file and picks information such
as the number of the cities, the name of the file, the optimum tour length given, all the cities and
their coordinates.

The system then creates a dataset of the arcs that represent the distances from each city to any
other.

The user selects the type of algorithm among those available and, at the end, he starts the
algorithm computation that will produce as result the length of the tour and its sequence of cities
visited in order, using the properties of the “artificial ants” implemented.

CRC Cards
The scenario description helps to understand the design.
Based on this description, it was possible to select the main classes and their role inside the

program.

From this analysis, these are the CRC cards produced:

CLASS: TSP Data
Responsibilities Collaborators

This class is responsible for reading the file in input, City, Arcs, TSP Solver
creating a dataset and storing it in a sensible way in
order to have it suitable for the solver.

CLASS: City

Responsibilities Collaborators
This class is responsible for organize the information TSP data, Arc
about a city such as its number, x coordinate and y

coordinate.

CLASS: Arc

Responsibilities Collaborators
This class is responsible for organize the information TSP data, City

about an arc such as the origin city, the destination city
and the length of the arc.

CLASS: TSP Solver
Responsibilities Collaborators

This class is responsible for provide the results of the TSP data, Algorithm
algorithm computation based on the given data and the
type of algorithm requested.

CLASS: Algorithm
Responsibilities Collaborators
This class is a general class for the Algorithm TSP Solver, Ant
implementation. It is responsible for the behaviour of
the algorithm and its parameters.

Each different type of Algorithm will derived from this
class.

CLASS: Ant

Responsibilities Collaborators
This class is responsible for the implementation of an Algorithm

“artificial ant”.

Class Diagram

The Class diagram in the Use-case design is a simple representation of the relationship existing
between all the classes.
It doesn’t show any information about the classes at this stage, but it helps for going throw the
Analysis Model stage.

TPS data

City Arc

TSP Solver

e Greedy
General
Algorithm \
\ ACO V0
ACOv1
Ant
ACOv2

Statechart Diagram

In this design, we can define four principal states.
The initial state is the IDLE, where the program waits for data to be uploaded.
One it happens, it creates a dataset and it waits until the algorithm is launched.

The Algorithm process can be divided into two states, the main process and the ant exploration
process.

© N | IDLE
NextAntColon
NextColony Processing algorithm 4 Ant exploration
AntSolution k

Best Solution

@

UpoadFile Creating dataset

——

FindNextStep

Interaction Diagram

The Interaction Diagram is responsible for showing the flow of the system.
In this case, it’s been considered worthwhile to use the Sequence Diagram as type of Interaction

Diagram.
f i ‘TSP Data :TSP Solver :GeneralAlgorithm :Ant
Upload File ; ; ; ;
a 5 : | :
1 1 1
D ReadInfoFromFile i i i
Cmmmmmmmm e : : :
ReadDataCityFromFille : .
» : : :
1 1 1
1 1 1
D CreateArcMatrix | y d
: | |
1 1 1
1 1 1
1 1 1
_D CreateTSPDataset | : :
Q- : | | :
I 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 ' ' 0
1
;TSP Data TSP Solver :GeneralAlgorithm :Ant
Launch Solver
1 1 1 1
1 1 1 1
! 1 1 1 1
: GetSolution : : : :
: > : :
l GetCities l l
< | |
1 . 1 1
:<* GetDistances LaunchSolver(type) : :
1 1
| |
g Depends on the type g
! of Algorithm !
1 1
: Extended in the :
{ ShorterPath Analysis Model {
: < :
| |
T L 1
1 1
1 1
1 1
1 1
1 1
1 1

Analysis Model

Class diagram

:TSPData

dataName: string
numberOfCities: int
optimumTourLenght: float
cityArray: City[]
matrixOfArcs: Arc[][]
citiesSorted: int[][]
distancesSorted: float[][]

TSPData()

NumberOfCities{get,set}
OptimumTourLenght{get,set}
DataName{get,set}
CityArray{get,set}
MatrixOfArcs{get,set}
CitiesSorted{get,set}
DistancesSorted{get,set}

ReadDatalnfoFromFile(filepath)
ReadDataCityFromFile(filepath)
CreateArcMatrix()
CreateTSPDataset()

xCoord: float
yCoord: float
number: int

1.. number of Cities

!

4

City()

Number{get,set}
XCoord{get,set}
YCoord{get,set}

:Arc

cityFrom: int
cityTo: int
distance: float

1.. elements of MatrixOfArcL

Arc()

CityFrom{get,set}
CityTo{get,set}
Distance{get,set}

10

:TSPSolver

numberOfCitiesTSP: int
distancesTSP: float[][]
citiesTSP: int[][|
iteration: int
sequenceSolution: int][|
bestLengthSolution: float

:GeneralAlgorithm

TSPSolver()
SequenceSolution{get,set}
BestLengthSolution{get,set}
[teration{get,set}

GetSolution(algorithmType)

numberOfCities: int
distances: float[][]

cities: int[][]

antColony: Ant|]
shortestSequenceOfCity: int[]
shortestPath: float

GeneralAlgorithm()
NumberOfCities{get,set}
ShortestSequenceOfCity{get,set}
ShortestPath{get,set}

LaunchSolver(iteration);

/N

:Greed

Greedy()

LaunchSolver(iteration)

:ACOv0

initialPheromone: float

beta: float

rho: float

quantity: float

pheromoneMatrix: float[][|
tempPheromoneMatrix: float[][]

ACOVO()

LaunchSolver(iteration)

GetProbability(cityFrom, cityToVisit[])

CreatePheromoneMatrix()
UpdatePheromoneMatrix()
EraseTempPheromoneMatrix()

:Ant

startCity: int
numberOfCities: int
shortestPath: float
sequenceOfCities: int][]
citiesVisited: bool]]

Ant()

StartCity{get,set}
SequenceOfCities {get,set}
CitiesVisited{get,set}
ShortestPath{get,set}

AddCityVisted(city)
AddToPath(city, number of step)
GetCitiesToVisit()

11

Statechart Diagram

'/F%
[)| UpoadFil
IDLE poadrile >(Creating dataset \W
L J Do: ReadInfoFromFile()

ReadCityDataFromFile()

FindNextStep

NextColony

NextAntCol 4
Processing algorithm M > Ant exploration

Do:mstancernew Colony < R o m— L

\—

Best Solution

@

Interaction Diagram

f i ‘TSP Data

Upload File
1 1

4 S -

:City :Arc

D ReadInfoFromFile

< _____________

D ReadDataCityFromFile

[Foreach number of city]
new City, set number, set Xcoorq, set Ycoord

CreateArcMatrix

[Foreach element of Matrix of Afcs]
new Arc(city a, city b)

[Foreach new Arc]
City, get Xcoord, get Ycoord

Arc, get distance, get CityTo

1
1
i
1
1
1
1
1
)
1
i
CreateTSPDatasgt [Foreach Arc] :
1
1
1
1
1
1
1
1
1
1
1
1

12

GREEDY ALGORITHM

‘TSP Data :TSP Solver :Greedy :Ant

Launch Solver

GetSolution !

>

GetCities

GetDistances

<
:e

LaunchSolver(type) | [Foreach Ant]

Get_StartCity

Get_CityVisited

[Foreach City]
DNextNearestCity(NotVisited)

AddToCityVisited l
] AddToPath ;E
Get_TourLength !
— 1
>
1
D ComparePathLegth g
ShorterPath 1
@ — e 1< u :
—_— 1 1 1
1 1 1 1
1 1 1 1
! ! !
ACO_v0 ALGORITHM
‘TSP Data :TSP Solver :ACOv0 :Ant
Launch Solver ! : ! :
1
: GetSoluti | | | |
etSolution 1 1 1 i
: > : :
! GetCities ! !
|< [For each Iteration] : :
E< GetDistances LaunchSolver(type) > _E_ i
1 1
! EraseTempPhermone !
i) i
! [Foreach Ant] :
' Get_StartCit '
: - Y >
1 1
! AddToCityVisited > I
1 1
: GetCityToVisit >:
1 1
] ! [Foreach City] d
1 1
i D GetProbability E
: D NextProbableCity(NotVisiﬁ'ed]
1 1
1 1
l AddToPath >E
1
! AddToCityVisited >:
1 1
l Get_TourLength !
: >
1
1 ShorterPath ComparePathLegth
S S e >

Y 1 L
I I I D UpdatePheromoneMatrix

13

Design Model

Class diagram

:TSPData - xCoord: float
- yCoord: float
- number: int

- dataName: string
- numberOfCities: int

- optimumTourLenght: float § -
- cityArray: City][] = +City()
O
- matrixOfArcs: Arc[][] kS
- citiesSorted: int[][] o +Number{get,set}
- distancesSorted: float[][] g +XCoord{get,set}
3 +YCoord{get,set}
+TSPData() -
+NumberOfCities{get,set} .
+0OptimumTourLenght{get,set}
+DataName{get,set}
+CityArray{get,set} :Arc
+MatrixOfArcs{get,set} -cityFrom: int
+CitiesSorted{get,set} ‘;é_ -cityTo: int
+DistancesSorted{get,set} Jg -distance: float
<
+ReadDatalnfoFromFile(filepath) % +Arc()
+ReadDataCityFromFile(filepath) E
+CreateArcMatrix() ° +CityFrom{get,set}
+CreateTSPDataset() b= +CityTo{get,set}
& +Distance{get,set}
%
Fi

14

:TSPSolver
-numberOfCitiesTSP: int
-distancesTSP: float[][]
-citiesTSP: int[][]
-iteration: int
-sequenceSolution: int] |

+TSPSolver(int numberOfCities,
float[][] distances, int[][] cities)

+SequenceSolution{get,set}
+BestLengthSolution{get,set}
+Iteration{get,set}

+GetSolution(algorithmType)

:GeneralAlgorithm <abstract>

-bestLengthSolution: float <>

#numberOfCities: int
#distances: float[][]

#cities: int[][]

#antColony: Ant][|
#shortestSequenceOfCity: int[]
#shortestPath: float

+GeneralAlgorithm(int
numberOfCities, float[][] distances,
int[][] cities)

+NumberOfCities{get,set}
+ShortestSequenceOfCity{get,set}
+ShortestPath{get,set}

+<abstract>LaunchSolver(iteration);

]

1.. number of cities

:Ant<protected>

:Greed

+Greedy()

+<overrided>LaunchSolver(iteration)

-startCity: int
-numberOfCities: int
-shortestPath: float
-sequenceOfCities: int][]
-citiesVisited: bool[]

:ACOv0

-initialPheromone: float

-beta: float

-rho: float

-quantity: float
-pheromoneMatrix: float[][]
-tempPheromoneMatrix: float[][]

+Ant()

+StartCity{get,set}
+SequenceOfCities {get,set}
+CitiesVisited{get,set}
+ShortestPath{get,set}

+AddCityVisted(city)
+AddToPath(city, number of step)
+GetCitiesToVisit()

+ACOvO(int numberOfCities, float[][]
distances, int[][] cities)

+<overrided>LaunchSolver(iteration)
-GetProbability(cityFrom, cityToVisit[])
-CreatePheromoneMatrix()
-UpdatePheromoneMatrix()
-EraseTempPheromoneMatrix()

15

Details of Algorithm implementation

The matrices produced by the TSPData class used in the TSPSolver class have these
characteristics:

* Each Row in the matrix of Distances represents the origin city.

* Each Element represents the distance to the city of destination.

* The city of destination is the relative element in the matrix of Cities (the element with
same indexes).

The reason behind this division is due to the pre-sorting process applied to the data structure.
This choice was taken in order to reduce the complexity of the data structure during the
computation.

However, this is been contradicted by the results.
Despite Greedy is really optimized, the ACO algorithms are not; a different implementation with
better results has been tested but not implemented on this project.

Greedy Algorithm

With the matrices already sorted, the next city is always the next element in the matrix of
destination cities that represent a city not been visited yet.
In this case, the matrix of distances is used just for retrieve the value of the distance. In fact the
choice of ‘next city’ is doesn’t involve operations on the matrix of distances.
In addition, being Greedy a deterministic algorithm it doesn’t need to be iterated for more than
one colony.

Pseudo-code:
// Iteration for all the ants in the colony
For all the Ants in the colony
Begin
Ant.AddCityVisted (StartCity)
presentCity = Ant.StartCity

//Iteration for all the cities of the TPS problem
For all the cities
Begin

NextCityFound = false;
if (Ant.CitiesVisited[cities[presentCity] [k]]
distanceToNextCity = distances[presentCity] [k]
numberOfNextCity = this.cities[presentCity] [k]
Ant.AddCityVisted (numberOfNextCity)
Ant.AddToPath (numberOfNextCity, numberOfIteration)
presentCity = numberOfNextCity
pathLenght = pathLenght + distanceToNextCity
NextCityFound = true

End

== false && NextCityFound == false)

16

Ant.Path = pathLenght

if (ShortestPath == 0)
ShortestPath = Ant.Path
ShortestSequenceOfCity = Ant.SequenceOfCities

else if (Ant.Path < ShortestPath)
ShortestPath = Ant.Path
ShortestSequenceOfCity = Ant.SequenceOfCities
End

ACO vO algorithm

In the ACOvO0, a pheromone deposit and evaporation process was added as well as a decision

for the next city based on a local probability value.

Unlike the Greedy Algorithm, all the ACO Algorithms need to be iterated so that the pheromone

event can interact with the search for the shortest tour length of each ant.

Pseudo-code:

//Iteration of the ACO Algorithm
Erase (TemporaryPheromoneMatrix)

//Iteration for all the ants in the colony
For all the Ants in the colony
Begin
Ant.AddCityVisted (StartCity)
presentCity = Ant.StartCity

//Iteration for all the cities of the TPS problem
For all the cities
Begin

Ant.GetCitiesToVisit ()

Probabilities[] = GetProbability(presentCity, CitiesToVisit)

MaxProbable = Max.Probabilities][]
RetrivelIndex (MaxProbable)

distanceToNextCity = distances[presentCity] [MaxProbable]
numberOfNextCity = this.cities[presentCity] [MaxProbable]

AddPheromone (TemporaryPheromoneMatrix)

Ant.AddCityVisted (numberOfNextCity)
Ant.AddToPath (numberOfNextCity, numberOfIteration)

presentCity = numberOfNextCity
pathLenght = pathLenght + distanceToNextCity

End

Ant.Path = pathLenght;

if (ShortestPath == 0)
ShortestPath = Ant.Path
ShortestSequenceOfCity = Ant.SequenceOfCities

else if (Ant.Path < ShortestPath)
ShortestPath = Ant.Path
ShortestSequenceOfCity = Ant.SequenceOfCities
End
UpdatePheromone ()

17

ACO v1 algorithm

In the ACOv1 algorithm, the process of pheromone deposit was modified using a secondary
matrix for keeping track of the pheromone deposited by the ant that that made the shortest tour
length inside a colony.

Unlike the previous pheromone matrix that is erased every time a new ant colony is created, this
new matrix is constantly erased for each new ant.
(Parts of the code added to the previous version have been highlighted)

//Iteration of the ACO Algorithm
Erase (TemporaryPheromoneMatrix)

//Iteration for all the ants in the colony
For all the Ants in the colony
Begin

Ant.AddCityVisted (StartCity)
presentCity = Ant.StartCity

//Iteration for all the cities of the TPS problem
For all the cities
Begin
Ant.GetCitiesToVisit ()
Probabilities[] = GetProbability(presentCity, CitiesToVisit)

MaxProbable = Max.Probabilities][]
RetrivelIndex (MaxProbable)

distanceToNextCity = distances[presentCity] [MaxProbable]
numberOfNextCity = cities[presentCity] [MaxProbable]

AddPheromone (TemporaryPheromoneMatrix)
AddPheromone (TemporaryPheromoneMatrix BestTourLength)

Ant.AddCityVisted (numberOfNextCity)
Ant.AddToPath (numberOfNextCity, numberOfIteration)

presentCity = numberOfNextCity
pathLenght = pathLenght + distanceToNextCity

End

Ant.Path = pathLenght;
if (ShortestPath == 0)
ShortestPath = Ant.Path;
ShortestSequenceOfCity = Ant.SequenceOfCities
PheromoneMatrix BestTourLength = TemporaryPheromoneMatrix BestTourLength

else if (Ant.Path < ShortestPath)
ShortestPath = Ant.Path
ShortestSequenceOfCity = Ant.SequenceOfCities
PheromoneMatrix BestTourLength = TemporaryPheromoneMatrix BestTourLength
else
Erase (TemporaryPheromoneMatrix BestTourLength)
End
UpdatePheromone ()

ACO v2 algorithm

In the ACOv2 algorithm the decision related to the ‘next city’ was modified and a ‘pseudo-
random’ process added.
In this case, a threshold verify the weight of the ‘max probable’ next city, if it is under a certain
level, than the decision of the next city is transferred to a random process that select one of the
‘most probable’ next cities.

18

(Parts of the code added to ACOv0 have been highlighted)

//Iteration of the ACO Algorithm
Erase (TemporaryPheromoneMatrix)

//Iteration for all the ants in the colony
For all the Ants in the colony
Begin
Ant.AddCityVisted (StartCity)
presentCity = Ant.StartCity

//Iteration for all the cities of the TPS problem
For all the cities

Begin
Ant.GetCitiesToVisit ()
Probabilities[] = GetProbability(presentCity, CitiesToVisit)

MaxProbable = Max.Probabilities]]

//Pseudo-Random Probabilistic decision

If (MaxProbable > ProbabilityThreshold)
RetrivelIndex (MaxProbable)
distanceToNextCity = distances[presentCity] [MaxProbable]
numberOfNextCity = cities[presentCity] [MaxProbable]

Else if(Probabilities.Length > threshold)
Sort.Probabilities
GenerateRandomIndex (from 0 to threashold)

distanceToNextCity = distances|[presentCity] [RandomIndex]
numberOfNextCity = cities[presentCity] [RandomIndex]

Else()
RetrivelIndex (MaxProbable)
distanceToNextCity = distances[presentCity] [MaxProbable]
numberOfNextCity = cities[presentCity] [MaxProbable]

AddPheromone (TemporaryPheromoneMatrix)

Ant.AddCityVisted (numberOfNextCity)
Ant.AddToPath (numberOfNextCity, numberOfIteration)

presentCity = numberOfNextCity
pathLenght = pathLenght + distanceToNextCity

End

Ant.Path = pathLenght

if (ShortestPath == 0)
ShortestPath = Ant.Path
ShortestSequenceOfCity = Ant.SequenceOfCities

else if (Ant.Path < ShortestPath)
ShortestPath = Ant.Path
ShortestSequenceOfCity = Ant.SequenceOfCities
End
UpdatePheromone ()

Account of Structured Testing

The testing of this system has been approached in a very specific way.

Firs of all, the initial tests were run on a Console Application without the GUI, using the
Console.Write() and Console.WriteLine() methods for printing out the data on the monitor.
For this reason, I implemented a set of methods for printing that are not included in the UML
design that had been commented and placed at the end of the code of each class.

In order to fully understand the results from these tests, a subset of data entries was created
from scratch. Knowing the expected solution, with this method it was possible to validate the
functionality of the algorithms implemented.

TSPData Class Testing

Based on using ad-hoc print methods that print the data out on the console monitor, the first
test was generated with a really easy dataset.
The file has 4 cities, which are placed at the vertexes of a square of length 1.

o B X

File Edit Format View Help
NAME : testl

COMMENT : 29 Tocations in western Sahara

COMMENT : Derived from National Imagery and Mapping Agency data
COMMENT : Optimum tour length is 4

TYPE : TSP
DIMENSION : 4
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION

10

Figure 1 - Custom set of entries with 4 cities

The obtained results were completely congruent with the expectation.

In the first matrix printed out:
- in each row there are all the distances from a starting point (where the row represents the
starting point)
- the distances are sorted from the smallest value to the biggest
- there are 12 values, which are all the arcs linking a set of 4 points

In the second matrix printed out:
- all the elements represent the arriving point (and the row represent the starting point)
- the elements in each row are the points excluding the one representing the Row
- there are 12 values, which are all the arcs linking a set of 4 points

1.414214

8 |
1
1
1
1
1
0
1
8

NN W Ll ol

Figure 2 - Console application results for TSPData class

20

Those results prove that the TSPData acquisition method from a human readable file works as
expected, so I tested directly with the TSP data given for the assignment without encounter any
problem.

TSPSolver Class Testing

The test on the TSPSolver class wasn’t possible to be achieved with a too easy and symmetric
example as the ‘square’ used for the TSPData class, because a wrong behaviour could have led to
aright result.

So, I realised another subset of entries with 7 Points placed as shown in figure.

File Edit

: test3 Al

Format View Help

COMMENT : 29 ’Iocgt;ons in west$rn Sahara .
: Derived from National Imagery and Mapping Agency PELO-12)
: optimum tour length is 45.32 @ retoi) % (11,12)
T TSP
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION
pPE(2 9}
@Pp2:8}
@ P4(12,7)
Figure 3 - Custom set of entries with 7 cities @P304)
9F2(11,2)
©.Pd(0,0)

Figure 4 - Graphical view of the custom set with 7 cities

The TSPSolver used the sorted matrices for the distances and for the cities, which was calculated
by the TSPData class and verified with the results calculated by hand.

8.246211 11.18834 12 13.89244 16.27882
.999082 9.848858 1@ 11 13.60147 16.27882
.09902 10 16.81665 11.180834 11.18834 14.86607

4.472136 8 11.180834 12.36932 13.68147 -

09902 5.89992 10.04988 12.36932 13 13.89244 (7] temp_data - Notepad [L= S
1472136 4.472136 8.246211 9.848858 10.04988 10.81665 [SSESESESSESRL L e
.472136 8 11 12 13 14.86607 Filer~Edit Format— View —Help

N |

(goub'le[] [] distances = new double[][]

new double[] {4,8.25,11.18,12,13.9,16.28},

new double[] {5.1,9.85,10,11,13.6,16

new double[] {5.1,10,10.82,11.18,11.18,14.87}

new double[] {4,4.47,8,11.18,12.37,13.67,

new double[] {5.1,5.1,10,12.37,13,13.9}

new double[] {4.47,4.47,8.25,9.85,10,4.47} -
3 new double[] {4.47,8,11,12, 13 14.87 g
int[][] cities = new int[][]

Figure 5 - Console Application results with 7 cities t new int[] {4,6,3,7,5,2},

new int[] {5,6,3,7,4,1},

new int[] {5,2,6,1,4,7},

new int[] {1,6,7,3,5,2},

new int[] {2,3,6,4,7,1},

new int[] {4,7,1,2,5,6},

new int[] {6,4,2,1,5,3}

IH

21

In this example, the dataset is not symmetric so it was possible to verify the correct behaviour

of the Greedy Algorithm.

In fact, starting from a point and making a complete tour choosing the nearest next point as rule
return a different result based on which is the first point chosen.
The optimum tour result calculated by hand was 45,32 , which corresponds with the result

returned by the computation of Greedy Algorithm.

Name: test3

Number Of Cities: 7
Optimum Tour Length: 45

Selected Algorithm: Greedy

© Greedy © ACO VO © ACO vl © ACO v2

Best Tour Length: 45.32265

START

Figure 6 - Windows From - Greedy - 7 cities

For the ACOvO algorithm a great part of the testing was based on studying the ‘update and

evaporation process’.

This was achieved using the print methods implemented and verified with the expected

behaviour for the custom dataset of 7 cities.

Anyway, the correct behaviour of the ACO couldn’t be studied with a data entry that can lead to
an Optimum solution with Greedy algorithm. Thus, it was mandatory to use a quite complex one,
so the 29 cities example had been chosen as the most appropriate (in term of computation time

and rapid re-testing).

Name: wi29

Number Of Cities: 29
Optimum Tour Length: 27603

Selected Algorithm: Greedy

© Greedy © ACOVO © ACOv1 © ACO v2

Best Tour Length: 32161.4 |[leu oo

START

Figure 7 - Windows Form - Greedy - 29 cities

Name: wi29

Number Of Cities: 29
Optimum Tour Length: 27603

Selected Algorithm: ACO v0

© Greedy © ACO VO © ACOv1 O ACOv2

Best Tour Length: 30112.09

START

Figure 8 - Windows Form - ACOvO - 29 cities

22

Once verified that the ACOvO returned better results than Greedy, a series of test have been run

for tuning the parameters of this Algorithm.

The ACOv1 and ACOv2 were then implemented and tested on a set of data entries with more than
100 cities. Unfortunately, the ACOv1 has never return better results than ACOvO.

Name: qal94
Number Of Cities: 194
Optimum Tour Length: 9352

Selected Algorithm: ~ Greedy

© Greedy © ACOvVO0 O ACOv1 © ACO v2

Best Tour Length: 11722.04
=

Name: qal94
Number Of Cities: 194
Optimum Tour Length: 9352

Selected Algorithm: ACO v1

© Greedy © ACOVO © ACOv1 O ACO v2

Best Tour Length: 11316.87

Name: qal94

Number Of Cities: 194
Optimum Tour Length: 9352

Selected Algorithm: ACO vO

© Greedy @ ACO VO © ACOv1 © ACO v2

Best Tour Length: 11316.87

I START

5l TSP Solver with Swarm Intellingence Algorithms

I START

Name: qal94

Number Of Cities: 194
Optimum Tour Length: 9352

Selected Algorithm: ACO v2

© Greedy © ACOVO © ACOvV1 © ACO v2

Best Tour Length: 10934.5

o 8 %]

START

23

Conclusions

The results obtained for this implementation are sufficiently satisfactory for what concerns the
functional requirements of this design.

The Greedy algorithm, as the ACOvO0, return results that in the expected range of accuracy.
The ACOv1 and ACOv2 are not been tested sufficiently on large data entries in order to tune the
parameters properly.

Certainly, the main improvements to be done are addressed to the data structure for the TSP
solving algorithms. The data structure should be conceived in order to minimize the operations
required to select the next City in the ACO, such as getting the Local Probability and updating the
Pheromone.

Also, the approach to OOP used in this project is definitely to enhance.

Even though the UML helped to understand the methodology for building a design in an Object
Oriented Language, the process of organizing the code for such technical and ‘domain’ based
problems needs to be exercised.

Regarding the quality of the ACO algorithms, it could be interesting to implement a strong
approach to multithreading based on smaller sub-systems of the exploration space.

Selecting multiple sets of near cities and treating each of them as a smaller TSP dataset. Thus the
pheromone update will confine the exploration space on an optimized subset of suitable ‘next
city’.

This assignment was a great opportunity to improve the knowledge on OOP Languages.
Although the results obtained are not completely fulfilled for all the requirements of this system,
[acquired a good understanding of complex algorithm efficiency and the relationship between
them and their related data structure.

24

