OOP

[image: image1.jpg]pER| 4p
ARDU ALTA

[image: image2.png]UNIVERSITYOF
BIRMINGHAM

Object Oriented Programming Using C#

Assignment Introduction Programming Exercise
2012/2013

Dr M. Spann

1. Aims and Objectives

This is a programming exercise designed to introduce the assignment. You should be able to complete this exercise within the allotted time and you are encouraged to make sure you have a complete working program before you tackle the main assignment. This exercise is not assessed.
The aim of the main assignment is to implement a lift controller along with a graphical user interface (GUI) and simulator. This exercise introduces the GUI and lift controller. You should implement each within its own project in a single solution. Specifically all your program needs to do is to be able to move a lift up or down in response to a GUI button click. The key idea is that the motion of the lift is controlled by the lift controller. The GUI has no knowledge of the lift controller. It simply reflects changes in the lift’s position as the controller moves the lift up or down. This is done through the use of events where the controller raises an event in response to a change in position of the lift. This event is picked up by the GUI which updates itself to respond to the change in position. This idea can equally apply to the full assignment such as reflecting changes in the state of lift sensors
2.
Lab Work
Create 2 projects within a single solution, one for the GUI and the other for the lift controller. The first is obviously a Windows Forms project and the second should be a console project. You should be able to test the lift controller project independently of the GUI. The GUI is just a lift which is implemented as a Panel which is inserted into a Form. This can be moved up and down by setting the Top property of the Panel object. The GUI should contain ‘up’ and ‘down’ buttons which initiate the lift motion in their respective event handlers. All of this can easily be implemented in Visual Designer with a minimum of coding.
The key to the assignment is in understanding the interaction between the LiftController object and the GUI. The LiftController object simulates the embedded system used to control the lift motion. Note that this exercise would be trivial if it were implemented as just a single GUI project.

The LiftController object moves the lift up or down in response to clicking the up or down button on the GUI. When it changes the location of the lift, it generates an event which is picked up by the GUI. You need to declare a LiftPositionChangeDelegate delegate and liftPositionChangeEvent object in your LiftController project. This has to be visible from the GUI. You can do this using following code in your lift controller project:

This publicly exposes LiftPositionChangeEvent which the GUI can register using the following statement:

The positionChangeHandler() event handler is then the callback function for the liftPositionChangeEvent events.
It is recommended that you create and initiate a new thread of execution for each lift movement (from bottom to top or vice versa) in the GUI button clicks event handler. Whilst this is not strictly necessary for this simple exercise, in the full assignment a complete lift movement could be in response to a number of user events (such as pressing a button at several floors or pressing several onboard lift buttons). You would create a thread to service all of these events and the thread then dies when there are no outstanding events left. By using the ParameterizedThreadStart delegate, you can pass arguments to the function that is called to in response to calling the thread’s Start() method:

public event liftPositionChangeDelegate LiftPositionChangeEvent

{

add

 {

 		liftPositionChangeEvent += value;

 }

 	remove

 {

 liftPositionChangeEvent -= value;

 }

}

liftController.LiftPositionChangeEvent +=

new liftPositionChangeDelegate(positionChangeHandler);

liftControlThread = new Thread(new ParameterizedThreadStart(startControllerThread));

.

.

.

private void startControllerThread(object obj)

{

Direction direction = (Direction)obj;

 liftController.startLift(direction);

}

PAGE
3

