Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION
	
	Year
	Sessional
(
Resit
(
Special
(
(Tick as appropriate)
	Examiner MS

	Marks

Allocated
	
	Question No: 1

	
	
	

	
	a)
	(i)&(ii)

	4 for correct class structure
	
	

	
	
	

	
	
	

	3 for constr.
	
	

	
	
	

	
	b)
	

	8 for sensible class structure
	
	

	Including constr. imp
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION - Continuation Sheet
	Marks

Allocated
	
	Continuation Sheet No: 1
Ques No: 1

Year:

	
	
	

	
	b)
	(i)

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	(ii)

	5 for applying correctly polymorphism. Ie se of base class pointers
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION
	
	
	Sessional
(
Resit
(
Special
(
(Tick as appropriate)
	Examiner MS

	Marks

Allocated
	
	Question No: 2

	
	
	

	2
	a)
	a) Multi threading is when an application runs in several concurrent threads

	2
	
	A thread is different to a process in that processes has their own independent data whereas threads can share data

	
	
	

	2 for correct class headed
	
	b)

	
	
	

	2 for run method
	
	

	
	
	

	4 for main method
	
	

	
	
	

	
	
	

	
	
	

	2
	
	c) The Join() method of class Thread causes the calling thread to suspend execution until the thread who’s Join() method has been called terminates

	6 for similar example
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION - Continuation Sheet
	Marks

Allocated
	
	Continuation Sheet No: 1
Ques No: 2

Year:

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION
	
	
	Sessional
(
Resit
(
Special
(
(Tick as appropriate)
	Examiner MS

	Marks

Allocated
	
	Question No: 3

	
	
	

	1

1

2

2

1
	b)
	a) Private - variable can’t be accessed from outside the class

Public – method can be called from anywhere

Public (class) – class is visible from outside its containing file

Static – method is part of the class and can be called without creating an object of the class

b) (i)

	

	
	c)
	
	

	
	
	
	

	
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	3
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION - Continuation Sheet
	Marks

Allocated
	
	Continuation Sheet No: 1
Ques No: 3

Year:

	
	
	

	
	
	(ii)

	1 for public class keyword
	
	

	3
	
	

	
	
	

	
	
	

	2
	
	(iii)This leads to a multiple reference to a date object as the assignment

	
	
	

	
	
	doesn’t copy objects, it simply copies the references. Thus the Date object is referenced by the birthdate instance variable in Person as well as the variable date.

	
	
	

	1
	
	This is undesirable since the Date object representing the persons birthdate may be updated externally to Person breaking encapsulation

	
	
	

	
	
	The solution is to perform a deep copy inside the Person class

	3
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION
	
	
	Sessional
(
Resit
(
Special
(
(Tick as appropriate)
	Examiner MS

	Marks

Allocated
	
	Question No: 4

	
	
	

	2

2
	d)
	a) (i) Inheritance is a class inheriting attributes from another class in order to override or extend the functionality of the inherited class

Polymorphism is where the member function of an object accessed through a base class pointer is the member function of the derived class object which the base class pointer points to.
	
	

	
	e)
	
	
	

	4 for good example of derivation
	
	(ii) class MyBaseClass

 {

 public

 void f() { Console.WriteLine(“Base class”);}

 }

 class MyDerivedClass:MyBaseClass

 {

 public

 void f() { Console.WriteLine (“Derived class”);}
	
	

	
	
	 }

class MyTestClass

{

 public static void main(String args[])

 {

 MyBaseClass mb=new MyDerivedClass();

 mb.f(); // MyDerivedClass::f() is called

 }

 }
	
	

	
	
	
	
	

	
	
	
	
	 class MyDerivedClass extends MyBaseClass

 {

 public

 void f() { System.out.println(“Derived class”);}

 };

	
	
	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION - Continuation Sheet
	Marks

Allocated
	
	Continuation Sheet No: 1
Ques No: 4

Year:

	
	
	

	6 for example, the following is an adequate answer
	
	b) (i) class Shape

 {

 private

 int x,y;

 public

 abstract float area();

 abstract void inputShape();

 }

 class Circle:Shape

 {

 private float radius;

 public

 float area() {return 3.14159*radius*radius;}

 void inputShape() { radius=Console.readDouble(“Input radius”);}

 }

 class Square:Shape

 {

 private float side;

 public

 float area() { side*side;}

 void inputShape() { side=Console.readDouble(“Input side length”);}

 }

	The key point is declaring a base class (pointer) and the use polymorphism

6
	
	(ii) Shape shape;

 Console.WriteLine(“Which shape do you require :”);

int s=Console.readInt(“Input 0 for circle or 1 for square : “);

if (s==0)

{

shape=new Circle();

}

else if (s==1)

{

 shape=new Square();

}

shape.InputShape();

 shape.area();

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION
	
	
	Sessional
(
Resit
(
Special
(
(Tick as appropriate)
	Examiner MS

	Marks

Allocated
	Question No: 5
	

	
	
	

	1

1
	(a) (i) abstract class contains at least 1 abstract method (containing no code – just method header)
Interface – contains a list of methods to be implemented by classes implementing that interface
	
	

	1
	You would use an abstract class in generic programming when the implementation of some of its methods were not obvious
	
	

	1
	 As above but when the abstract class was also a derived class – Java does not allow multiple inheritance
	
	

	2
	Difference is that abstract classes can contain instance variables whereas an interface is just a list of methods
	
	

	
	
b(i)
	
	

	3
	
	

	
	
	

	
	
	

	1
	(ii)
	

	
	
	

	
	
	

	2
	Anything sensible will do here. For example, the movePiece() method will check the status of the board to see if a move requested by the game engine is legal. And, if so, send a message to the board controller class to update the board graphics.
	

	
	
	

	3
	(iii) It is sensible to hide the implementation of the chess board from the player and chess piece classes. The player will access the board through interface methods and not directly. Thus, if the board implementation changes, the player classes are unaffected as are all of the piece classes.
	

	
	
	

	
	
	

	
	
	

	
	
	

Electronic, Electrical & Computer Engineering

The University of Birmingham
SOLUTION TO EXAMINATION QUESTION - Continuation Sheet
	Marks

Allocated
	
	Continuation Sheet No: 1
Ques No: 5

Year:

	
	
	

	2
	
	(iv) Sensible answers accepted here.

The game intelligence would be put in the player classes. For example, the player class might incorporate a nextMove() method which assesses the board status by calling methods from the ChessBoard class to examine the board status and then calls the movePiece() method of the particular piece.

	3
	
	Different levels of player could be incorporated into the game by deriving from a basic Player abstract class. Thus IntermediatePlayer and GrandMaster could be extended from the Player class.

	
	
	These derived classes would incorporate different algorithms for deciding on the next move according to the player level. This has the advantage of making the application extendible. If a new grade of player is to be introduced, it would be easy to plug it into the application trough the use of polymorphism. Any references to player methods are essentially through base class references.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

class ChessPiece

{

	private:

		char colour;

	

	public abstract class movePiece(int dx, int dy);

}

class Bishop extends ChessPiece

{

	

	public class movePiece(int dx, int dy);

}

class MyDerivedClass : MyBaseClass

{

	private int der_attr;

	public

		MyDerivedClass(int a1,int a2): base(a1);

		{ der_attr=a2;

		void WhatAmI() {Console.WriteLine(“Derived class”);}

}

class Animal

{

	private String name;

	public

		Animal(String n) {name =n;}

		abstract void WhatAmI();

		abstract void (WhereILive();

		String getName() {return name;}

}

class FarmAnimal: Animal

{

	public

		abstract void WhatAmI();

		void (WhereILive() {Console.WriteLine(“Farm”);}

		FarmAnimal(n) {base(n);}

}

class DomesticAnimal: Animal

{

	public

		abstract void WhatAmI();

		void (WhereILive() {Console.WriteLine(“House”);}

		DomesticAnimal(n) {base(n);}

}

class Cat :DomesticAnimal

{

	public

		Cat(n) {base(n);}

		void WhatAmI() {Console.WriteLine(“My name is “ + getName());

				Console.WriteLine (“I am a cat”); }

		

}

class Pig: FarmAnimal

{

	public

		Pig(n) {base(n);}

		void WhatAmI() { Console.WriteLine (“My name is “ + getName());

				Console.WriteLine (“I am a pig”); }

		

}

Animal c=new Cat(“Tabatha”);

Animal p=new Pig(“Porky”);

p.WhereILive();		// “Farm” printed

c.WhereILive();		// “House printed

c.WhatAmI();		// “Tabatha Cat” printed

p.WhatAmI();		// “Porky Pig” printed

setBirthdate(Date date)

{

	Date tempDate=new Date();	

	tempDate.d=date.d.

	tempDate.m=date.m;

	tempDate.y=date.y;

	birthdate=tempDate;

}

birthdate=date;

using System;

using System.Threading;

class MyThreadedApp

{

	public static void Main(string[] args)

 	{	

 		MyClass myObject=new MyClass();

		Thread thread=new Thread(new ThreadStart(myObject.myMethod));

		thread.Start();

 		 Console.WriteLine("First thread");

	}

}

class MyClass

{

	public void myMethod()

	{

		Thread thisThread=Thread.CurrentThread;

		Console.WriteLine("Second thread");

	}

}

class Person

{

	private String name;

	private Date birthday;

	public Person(Date d; String n)

	{

		birthday=d;

		name=n;

	}

}

public class PersonTest

{

	public static void Main(string[] args)

	{

		Date d=new Date(1,5,1990);

		Person p=new Person(d,“J. Smith”);

	}

{

	

class Date

{

	private int d,m,y;

	public Date(int dd,int mm,int yy)

	{d=dd; m=mm; y=yy;}

}

using System;

using System.Threading;

class JoinTest

{

 static void SayHello()

 {

 Console.WriteLine("Hello, ");

 Thread.Sleep(15000); // Something goes wrong, here.

 Console.WriteLine("World");

 }

 static void Main(string[] args)

 {

 Thread thread1 = new Thread(new ThreadStart(SayHello));

 thread1.Start();

 thread1.Join(10000);

 if (thread1.IsAlive)

 {

 Console.WriteLine("Thread 1 timed out. I am killing it.");

 thread1.Abort();

 }

 Console.Read();

 }

}

