Description: This document is a tutorial in a series of tutorials for programmers learning about the .NET Framework development environment. What you will learn is what the Common Language Runtime is and the important role that it plays in the .NET Framework. The skills from this tutorial will help the C# or VB.NET programmer to take full advantage of the platform.

Requirements: You should be familiar with at least one programming language, such as C++, Pascal, PERL, Java or Visual Basic. You should have some comfort with object oriented concepts such as instantiating and using objects. You should be familiar with the different components of the .NET Framework. (If you are not, please read the tutorial titled Introducing the .NET Framework). You should be comfortable with general computer science concepts. To do the exercises and run the examples you need a PC running Windows with the .NET Framework installed.

Table of Contents

Table of Contents
1
Figures and Exercises
3
1.
Introducing The Common Language Runtime
4
1.1.
The Purpose of the Common Language Runtime
4
2.
Understanding Managed Code
6
2.1.
Intermediate Language
6
2.2.
Metadata
9
2.3.
Code Management
9
2.4.
A General Purpose Platform
11
3.
Packaging and Deploying Managed Code
11
3.1.
Understanding Managed Modules and Assemblies
12
3.2.
Building Assemblies
13
3.3.
Strongly Named Assemblies
14
3.4.
Building Library Assemblies
15
3.5.
Deploying Assemblies
17
3.6.
Versioning Assemblies
18
3.7.
Runtime Binding
18
4.
Reflection
19
5.
CLR Security
23
5.1.
Code Access Security
24
5.2.
Code Access Security Details
25
6.
Automatic Memory Management
26
6.1.
The Managed Heap
26
6.2.
Garbage Collection
26
6.3.
Finalization
27
6.4.
The Dispose Pattern
28
6.5.
Boxing and Unboxing
29
7.
The Common Language Runtime and Managed Code
30
Figures and Exercises

Figure 2‑1 Count.cs
7
Figure 2‑2 ILDasm Output for Count.exe
8
Figure 3‑1 Smiley.cs
13
Figure 3‑2 Smiley.cs (Strongly Named)
15
Figure 3‑3 FibObj.cs
16
Figure 3‑4 FibTest.cs
16
Figure 4‑1 InstanceToXml.cs
20
Figure 4‑2 InstanceToXml.cs Output Number 1
20
Figure 4‑3 InstanceToXml.cs Output Number 2
20
Figure 4‑4 ReflectYourself.cs
22
Figure 4‑5 ReflectYourself.cs Output
23
Figure 6‑1 The Dispose() Pattern
29
Exercise 2‑1 Build a managed assembly
11
Exercise 2‑2 Round-tripping IL
11
Exercise 3‑1 Build a managed multi-file assembly
19
Exercise 3‑2 Build a strongly named multi-file assembly
19
Exercise 3‑3 Test Assembly Integrity Protection
19

1. Introducing The Common Language Runtime

If you have been following this series of tutorials, then you know that the Common Language Runtime (CLR) is the platform (or execution engine) on which managed code runs. (If you have not been following this series of tutorials, you should probably read the tutorial Introducing the .NET Framework before reading this tutorial).
The CLR shares much in common with a traditional operating system, and as such is a useful piece of the .NET Framework to be familiar with if you will be writing managed code. (In the next tutorial in this series we will cover the other major component of the .NET Framework, the Framework Class Library or FCL).
Remember that Managed Code is the term applied to any software running on the .NET Framework. This includes C# programs as well as other languages that target the .NET Framework such as Java, C++, Visual Basic, PERL, etc. Understanding how the CLR works is a big piece of understanding what you can do with any of these languages.
1.1. The Purpose of the Common Language Runtime

Understand why the CLR is necessary can really help in understanding how it works. The .NET Framework exists as a platform that targets the Internet. The CLR is the execution engine for this platform, and these are its requirements.

 Safe binary execution. The more connected systems become, the more common it will become for software to run software-components that originated across the network or Internet. It is imperative that this software can be executed locally without fear of the system being undermined.

· Performance. Too many Internet development solutions opt for safety and flexibility at the detriment of performance. Many systems are built on languages that are interpreted or even scripted. These do not take great advantage of the abilities of the hardware in systems. It is important for production software to execute in the native machine language of the host system.

· Bug reduction. Although executing natively, software that targets the internet must be robust. If a client application crashes, it affects a single user. If a server application crashes it can affect thousands of users and cost a millions of dollars. Additionally, the more software is interconnected with (and reliant upon) software that is either running remotely, or distributed remotely, the more it is important that each of these components be robust.

· Ease of integration. Again, software that targets the Internet must be able to integrate with all kinds of other software. This includes software that runs locally, software that runs remotely, and software written for a wide variety of platforms. It is important that your platform of choice be flexible. You can not assume that you will know who you must integrate with for version two of your software, and therefore, a platform that targets the Internet must be highly flexible.

· Developer investment. For years the software industry has been experiencing an important trend. In the past, the resources that were most precious (to the computer industry) were technical. Things like bandwidth, hardware, memory, and other physical resources were precious. Today, software has become so important that the primary resource of the software industry is the software developer. Meanwhile, development has become much more complex and specialized. The Internet has fragmented development more than ever before with scripted software, server development, client development, browser component development, HTML, XML, DHTML, and the list goes on. However, we still have the old standards like systems, applications, and data-base development. A platform that targets the internet must homogenize the developer experience so that the languages and tools that a developer uses for project A are the same as the tools used for project B, even if these projects are vastly different in nature and serve vastly different purposes. This ability to leverage developer knowledge may well be the most important feature of a platform targeting the Internet.

The .NET Framework has its work cut out for it. The Common Language Runtime fulfills each of these requirements in one way or another. And now that you know the goals if this platform you are ready to jump into the nuts and bolts of how it works.

2. Understanding Managed Code

Managed code is a big piece of the .NET Framework. Managed code is what your C# or VB.NET code becomes once you compile it. The reason managed code is so important is that through code management it is possible for your software to run in vastly different environments safely, securely, and efficiently.
To understand managed code you must understand what it is made up of, and secondly what it means to be Managed by the common language runtime. We will first cover the pieces, which are Intermediate Language and Metadata. After that I will discuss the meaning of managed code.
2.1. Intermediate Language

Intermediate Language (also called IL, MSIL and CIL) is an assembly language for a CPU that doesn’t exist (yet). In fact, IL is designed to have as little bias as possible toward any one CPU.
For example, IL does not have registers, but instead uses the stack for everything that would normally happen in a register. This is because almost all CPUs support stacks, and it is unlikely that the target CPU would have the same number of registers as IL. Finally, when the IL code is JIT compiled into native machine language, the JIT compiler may chose to actually implement the IL stack using registers, the stack, or some other storage.
I just mentioned the term JIT-compiled without defining it, so I will do that now. IL is a binary assembly language that is compiled at runtime down to whatever machine language is appropriate for the host CPU. This runtime compilation is called Just-In-Time Compiling or JIT-compiling. JIT compilation always happens with managed code, so managed code always executes in native machine language.
But let’s get back to intermediate language. Compiled languages typically have their logic translated into one of two things: a machine language file that can be executed directly or a p-code file that is interpreted. Managed code brings both of these ideas together to take advantages of strong points of both.
You will find that in your normal day-to-day development you do not have to think about IL. You will write your software in your language of choice, compile it, and execute it. But it is important to know the tools that are at your disposal when necessary. So I am going to take a moment to show you around the world of IL.

using System;

using System.IO;

class App{

 public static void Main(String[] args){

 try{

 UInt32 final = Convert.ToUInt32(args[0]);

 for(UInt32 index = 0; index <= final; index++){

 // Write the number

 Console.Write(index);

 // Line feed

 Console.Write("\x0d");

 }

 }catch{

 Console.WriteLine("Usage: Count [32-bit integer value]");

 }

 }

}

Figure 2‑1 Count.cs

The code in fig 2-1 simply converts the first command line argument into an integer, and then displays every integer from zero to the target on the command line. What’s interesting about this application is not what it does, but how the .NET Framework manages it.
When you compile Count.cs the compiler produces an executable consisting of IL and metadata (metadata we will discuss shortly). Then, when you execute the application the Common Language Runtime recognizes the Main() method as the entry method, and loads its encapsulating type App. Part of the loading process is the runtime production of a stub method (in native machine language) for each function. Once the type is loaded, the CLR points the CPU at the Main() stub-method, and lets it run.
The stub method jumps back to a special JIT compilation method in the CLR which looks up the IL for Main(), and produces the machine language equivalent. Then the stub is replaced with the machine code, and the CPU jumps back into the method. Each successive time the method is called JIT compilation will not be necessary, and the method will run natively.
But the CLR is not the only thing able to look at IL. In fact, we can look at the IL produced for any of our code using a tool called ILDasm.exe. The ILDasm.exe tool ships with the .NET Framework SDK and can be used to disassemble any managed code so that you can see the types defined, as well as the IL for the methods. The following figure contains the IL for the Main() method of the code in fig 2-1
.method public hidebysig static void Main(string[] args) cil managed

{

 .entrypoint

 // Code size 53 (0x35)

 .maxstack 2

 .locals ([0] unsigned int32 'final',

 [1] unsigned int32 index)

 .try

 {

 IL_00: ldarg.0

 IL_01: ldc.i4.0

 IL_02: ldelem.ref

 IL_03: call unsigned int32 [mscorlib]System.Convert::ToUInt32(string)

 IL_08: stloc.0

 IL_09: ldc.i4.0

 IL_0a: stloc.1

 IL_0b: br.s IL_21

 IL_0d: ldloc.1

 IL_0e: call void [mscorlib]System.Console::Write(unsigned int32)

 IL_13: ldstr "\r"

 IL_18: call void [mscorlib]System.Console::Write(string)

 IL_1d: ldloc.1

 IL_1e: ldc.i4.1

 IL_1f: add

 IL_20: stloc.1

 IL_21: ldloc.1

 IL_22: ldloc.0

 IL_23: ble.un.s IL_0d

 IL_25: leave.s IL_34

 } // end .try

 catch [mscorlib]System.Object

 {

 IL_0027: pop

 IL_0028: ldstr "Usage: Count [32-bit integer value]"

 IL_002d: call void [mscorlib]System.Console::WriteLine(string)

 IL_0032: leave.s IL_34

 } // end handler

 IL_0034: ret

} // end of method App::Main

Figure 2‑2 ILDasm Output for Count.exe

The IL code in fig 2-2 is the output of ILDasm.exe (give or take some formatting for readability) when run on the .exe file generated by the sources fig 2-1. You can see when looking at the assembly that there are instructions for adding values together, calling methods, branching, and other expected instructions. However, you can also see that IL is very high-level, and understands concepts like structured-exception handling, virtual functions, and is very strongly typed. It is these high-level features of IL that begin to make some of the code-robustness goals of the CLR a possibility.
You will find that the ILDasm.exe tool is actually very helpful in understanding why your code behaves a particular way (especially when you are debugging or trying to increase the performance of your code).
In addition to being able to look at the IL of your managed applications, you can re-assemble IL using the ILAsm.exe tool. This tool will compile the output of ILDasm.exe back into a managed assembly, or it can be used to compile original IL source code, if a developer finds that IL is a better language for a particular task than any other of the .NET languages.
IL is the only real language that the Common Language Runtime understands; in much the same way that machine language is the only language that a CPU understands. As such, any compiler designed to produce IL can create software that runs with the .NET Framework. This is one of the cool features of the Common Language Runtime.

2.2. Metadata

IL is a big part of a managed binary, but it is not the only part. Metadata is also an important part of any .NET binary. Metadata is a structured data format that describes all of the parts of your code (except for the logic, which is described by IL). The Metadata describes class definitions, method definitions, parameter types, return types, and just about every other aspect of the code, other than the code itself.
Metadata serves a number of purposes. Metadata is required for the Common Language Runtime to enforce type-safety. Type-safety is a necessary component of robustness, and if types were not meticulously self describing, it would be possible for a piece of software to undermine the integrity of types in the process. As it stands this is impossible.
Metadata is also useful for runtime discoverability of code and code features. It is possible to reflect over a managed binary to find out facts about the code including what types are defined there, what methods and fields are on the types, and what interfaces they implement. This ability to reflect can create some amazingly flexible applications.
For example, you could write an editor that supports managed plug-ins. Plug-ins could simply be any class that implements some published interface to your editor. When your editor loads, it could search the configured directory for plug-ins, and then use reflection to reflect on the classes in each plug in for the ones that implemented the relevant interface. Then, also through reflection, your editor program could instantiate each type in the plug in and begin calling methods on the type.
All of this is possible because metadata richly describes the details of managed code, and these details can be discovered by code at runtime.
2.3. Code Management

Intermediate Language and metadata are necessary features of the Common Language Runtime. Without them, it would be impossible for the CLR to enforce type safety and verifiability. Without them, it would be impossible for the CLR to be assured that security has not been violated. Your managed code is packaged as a binary file filled with IL and metadata, and this gives the CLR sufficient information to JIT-compile it into machine language, as well as apply the necessary checks-and-balances to assure that your code is safe, secure, and robust.
So now that you know that IL and Metadata exist, you might be interested in knowing what the CLR does to manage your code. Here is a list of some of the more noteworthy features.
· Memory management. The CLR maintains a managed heap that is used for all memory allocations. The CLR also cleans up objects that are no longer used. Because of the information found in IL and Metadata, the CLR is able to enforce that references always refer to compatible types, null references are never accessed, instances are never referenced after they are freed, etc. This is one very important aspect of code management performed by the Common Language Runtime.

· Security. The CLR makes sure that code can not undermine a system if it is not trusted. An example of un-trusted code would be a binary that was downloaded and executed from a website. The great thing about managed code is that the un-trusted software still runs at full native speed. However, at the point of JIT-compiling, the CLR was able to insert enough code to assure that security cannot be breached. If the executable crosses the line, the CLR knows about it, and will raise a security exception. This will cause the unacceptable operation to fail.

· Thread management. Although you can create your own thread objects with managed code, the CLR maintains a thread pool which can be used by your software. The thread pool efficiently uses threads for asynchronous behavior, and then returns an unused thread to a queue until it is needed again.

· Type safety. It is impossible for managed code to coerce a type into an incompatible type. At runtime the CLR checks all typecasting operations to be sure that the cast is valid. Because managed code uses references to objects in a managed heap (rather than pointers), it is also impossible to coerce one type to another through pointer manipulation. This drastically reduces bugs, and removes the fear that third-party code might undermine the integrity of your system.

· Code verification. The CLR asserts certain truisms about managed code. For example, the CLR (by default) will not JIT compile code that references a variable before it has been assigned to. The CLR can also be made to JIT compile code so that numerical operations that overflow, raise exceptions so that they can be caught (although this is not the default). The CLR also asserts that all methods must have a return instruction. It is impossible for one instruction to run-over into the next. Code verification is another feature that makes code robust, and makes it safe to run un-trusted or semi-trusted components.

It is these things that make C# and any other code compiled for the .NET Framework managed. Code management combined with JIT compilation are two features that allow for the robustness necessary for code targeting the Internet, as well as enabling the performance that is also desirable.
2.4. A General Purpose Platform

The .NET Framework has been designed to be a general purpose platform for almost any kind of coding task. One very important effect of this design is that any programming language can be modified to run on the .NET Framework. All that is necessary is that a compiler be designed that emits IL and metadata. If the compiler can do this, then code created in that language can run on the .NET Framework.
Any code that targets the .NET Framework gets access to all of the system services provided by the Common Language Runtime, as well as all of the features of the framework such as the Framework Class Library (FCL), ASP.NET, etc.
Exercise 2‑1 Build a managed assembly

1. Using Visual Studio. NET or the command line compiler, build the application in fig 2-1. (You can actually use any managed code to do this exercise).
2. Run the .exe to see that it works.
3. Use ILDasm.exe to view the metadata and IL for the assembly as follows.
ILDasm count.exe
Be sure to try double clicking on the App type, as well as on the Main() method in the App type, to see the IL produced by the compiler.
Exercise 2‑2 Round-tripping IL

1. Use ILDasm to create a file for the IL of a managed module as follows.
ILDasm /Out=Count.IL Count.exe
2. Use notepad or another editor to view the newly created Count.IL source file.
3. Use ILAsm to rebuild the assembly from the .IL sources.
3. 3. Packaging and Deploying Managed Code

Distributing code in the form of source code can be very limiting. As a result, it is usually desirable (for production code) to be able to package and distribute source code as an executable binary unit.
The packaging of code into an executable binary unit is usually a detail that is defined by the underlying operating system. If you consider the Common Language Runtime to be the operating system on which managed code runs, then this rings true for managed code as well.
Typically a system defines only one binary code element. For example, Win32 defines the Portable Executable format (PE file), which is the basis for both .DLL and .EXE files. For Win32, the PE file is the format for binary distribution of code.
The CLR does things a little differently by breaking out the purposes of a binary distributable into different elements. The CLR defines two logical pieces that make-up a distributable unit of managed code. These are the Managed Module and the Assembly.
3.1. Understanding Managed Modules and Assemblies

Let’s start with the Managed Module. A managed module is a single file that contains the definitions for any number (zero or more) of types. This includes the IL and the Metadata describing each type, as well as all of the information necessary to describe external types that are referenced and utilized by the code in the module. In a way, the managed module fulfills the typical requirements of a binary unit of code; it is compiled, and it contains code. However, the code in a managed module can not be executed directly in any way.
The only unit of executable code with the CLR is the Assembly. Technically the assembly is the unit for deployment, execution, versioning, and security. I will explain each of these concepts throughout this tutorial. However, at this point it is most important that you remember that for it to be executable managed code must be packaged with an assembly.
Now if you guessed that an assembly can be comprised of one or more physical files, then you would be correct. While a managed module is made up of only a single file, a managed assembly can be made up of one or more files. These files can be any number of managed modules and assemblies can also include resource files (which can be any kind of file, including .jpg and .xml files, for example).
There are several purposes for decoupling the concepts of versioning, deployment, security and execution and the single physical file in the file system.
First, there is the issue of Internet deployment. Although you may want to logically deploy an assembly for use on a client machine, it may not be necessary to download every file (or every resource file), because the user may not touch every part of the assembly. So the CLR will download resources and managed modules on demand, only retrieving them as needed.
Second, it is often desirable for resource files to retain a separate identity from the binary executable. For example, .JPG and .BMP files are still saved in their regular file format even if they are part of an assembly. (Although if even one byte -or bit- of a managed module or resource file is changed after the assembly is built, the assembly becomes broken; more on this shortly).
By the way, the most common type of assembly is a single file assembly that is both a managed module and an assembly in which all of its resources are imbedded. So even though the CLR has made deployment more flexible, the common case closely mirrors binary deployment scenarios from preceding technologies.
Note: The detail that makes an assembly an assembly is this special block of metadata called the Manifest. The manifest describes each module in the assembly as well as each resource file. This description includes a secure hash of the file, so that if any file changes in transit the assembly is broken, and the CLR will refuse to load it. A managed module with a manifest is an assembly. The file that includes the manifest is the file that is used to identify the assembly. (I discuss assembly identification shortly).

3.2. Building Assemblies

Visual Studio.NET does not support the building of multi-file assemblies. With Visual Studio.NET you will always be building a single managed module with a manifest that refers only to itself (and no other managed modules or resource files). This limitation of Visual Studio.NET is unfortunate for larger projects, but can be overcome with the command line compilers that ship with the .NET Framework.
using System.IO;

using System.Reflection;

using System.Windows.Forms;

using System.Drawing;

class App{

 public static void Main(){

 new SmileyForm().ShowDialog();

 }

}

class SmileyForm:Form{

 Bitmap smiley;

 public SmileyForm(){

 // Load a file from the assembly

 Stream file =

 Assembly.GetExecutingAssembly().GetFile("Smiley.bmp");

 smiley = new Bitmap(file); // Create a bitmap from the file

 ResizeRedraw = true;

 }

 protected override void OnPaint(PaintEventArgs e){

 // Draw the bitmap on paint

 e.Graphics.DrawImage(smiley, ClientRectangle);

 }

}

Figure 3‑1 Smiley.cs

The code in fig 3-1 is really just a simple GUI application that displays a bitmap. However, the interesting thing about this code is that it is designed to be compiled into a multi-file assembly, where one of the files in the assembly is a bitmap file named Smiley.bmp. If you look at the line of code in red you will see how a Stream object is retrieved for the resource file.
It is worth noting that a path is not necessary to find the bitmap, because it is part of the assembly, and the manifest completely describes the file. It is also worth noting that if the Smiley.exe assembly is built with a Strong Name (which I will discuss shortly), then the resource file is hashed, and the hash is stored in the manifest, so that if even one bit of the file changes, the CLR will refuse to load the file.
Here is the command line command to build the Smiley.exe multi-file assembly.
csc /linkres:Smiley.bmp /target:winexe Smiley.cs
The portion of the preceding line shown in red is what causes the Smiley.bmp file to become part of the assembly. The portion shown in red indicates that the Smiley.bmp file should be included in the manifest as a file that is part of the assembly. You could also use the /addmodule switch to link in a managed module file.
3.3. Strongly Named Assemblies

There are several reasons why a file name is just not enough information to identify an assembly. One of these reasons is that code goes through revisions, and version two of an assembly is likely to have the same file name as version one. Secondly, for assemblies to be tightly bound to each other, and for assemblies to be tightly bound to the resource and module files that make them up, it is necessary for security measures to be taken. These measures come in the form of a Strong Assembly Name based on a public/private key pair.
The .NET Framework ships with a tool called SN.exe which will build a key-pair for use in building (and strongly naming) an assembly. For example, the following command line will create a file named Smiley.keys which contains a public/private key pair that can be used to strongly name an assembly.
SN -k Smiley.keys

If you wish to use the keys when building your assembly, you must use a Custom Attribute called AssemblyKeyFileAttribute, which is defined by the Framework Class Library (FCL). (Custom attributes are an important aspect of metadata that I will describe in more detail in a later section.

using System.IO;

using System.Reflection;

using System.Windows.Forms;

using System.Drawing;

[assembly:AssemblyKeyFile("Smiley.keys")]

class App{

 public static void Main(){

 new SmileyForm().ShowDialog();

 }

}

class SmileyForm:Form{

 Bitmap smiley;

 public SmileyForm(){

 // Load a file from the assembly

 Stream file =

 Assembly.GetExecutingAssembly().GetFile("Smiley.bmp");

 smiley = new Bitmap(file); // Create a bitmap from the file

 ResizeRedraw = true;

 }

 protected override void OnPaint(PaintEventArgs e){

 // Draw the bitmap on paint

 e.Graphics.DrawImage(smiley, ClientRectangle);

 }

}

Figure 3‑2 Smiley.cs (Strongly Named)

The code in the preceding figure is the same as the code from fig 3-1, with the addition of a single line that indicates a key-pair file to use in strongly naming the resulting assembly.
The ramifications of strongly naming your assembly will become clear throughout the remainder of this section.

3.4. Building Library Assemblies

Component development is becoming increasingly more important. More and more application code is going to be housed in reusable objects. These reusable types will exist in assemblies external of the main executable assembly.
The following code shows an (admittedly strange) reusable object named Fib.
using System;

public class Fib{

 Decimal current;

 Decimal last;

 public Fib(){

 current = 1;

 last = 0;

 }

 private Fib(Decimal last, Decimal secondToLast){

 current = last+secondToLast;

 this.last = last;

 }

 public Fib GetNext(){

 return new Fib(current, last);

 }

 public Decimal Value{

 get{return current;}

 }

}

Figure 3‑3 FibObj.cs

The source code in fig 3-3 defines an object named Fib that can be used from other assemblies. To compile this object into a library (using the command line compiler) do the following.
C:\>csc /Target:library FibObj.cs

Note: In this case we used the /Target switch to indicate that the assembly we are building is a library. This will create an assembly named FibObj.dll. FibObj.dll does not have a static Main() entry method defined, and it can not be executed alone. If you try to build a non-library assembly without an entry point method defined, the compiler will give you an error message.

We have now built a binary library containing an object with executable code. However, we need a regular executable assembly just to try the code.
using System;

class App{

 public static void Main(){

 Int32 index = 50;

 Fib obj = new Fib();

 do{

 Console.WriteLine(obj.Value);

 obj = obj.GetNext();

 }while(index-- != 0);

 }

}

Figure 3‑4 FibTest.cs

The sources for fig 3-4 can be used to test the FibObj.dll. However, special measures must be taken when compiling the sources in fig 3-4. This is because the source code refers to an object type called Fib, and the compiler needs to be told where the Fib type is implemented. That is done at compile time as follows.
C:\>csc /r:FibObj.dll FibTest.cs

The /r switch indicates to the C# compiler that the source code in FibTest.cs references objects implemented in FibObj.dll. There are a couple of points worthy of note here. First, the referenced file is the binary assembly file FibObj.dll, not the source code file FibObj.cs. Second, the lack of /Target switch indicates to the compiler that FibTest.cs should be compiled into the default assembly type, which is a console application.
Normally, you would probably strongly name your reusable component assembly. If an assembly that you reference (in an exe, for example) is strongly named, then the CLR can strongly bind the first assembly to the second. This way, if a future version of the reusable component library is not compatible with the older version, the CLR will continue to bind to the correct version, regardless of filename.

3.5. Deploying Assemblies

Assemblies are designed to be simple to deploy. In fact one of the precepts of the CLR is that code is deployable through simple means such as an XCopy.exe command. This is not the only means of deployment (more on this in a moment), but it is by far the preferred means.
But what does this mean? Well, first of all, assemblies contain metadata that completely describes themselves, the embedded types, and the externally referenced types. This wealth of information about the code contained within the binary eliminates much of the need for registration of objects that existed with other technologies such as COM. Second, your assembly should store configuration information about itself in an XML file in the same directory as the .exe itself, this way no system registration happens, and an installation can be easily uninstalled (by deleting a directory), or moved to another place in the file system.
The CLR also maintains information about where it found an assembly when it is loaded. For example, let’s say that you have posted the FibTest.exe file on a web-server to be deployed over the internet. There is nothing that stops you from executing this assembly from the command-line like this.
start http://www.someurl.com/FibTest.exe

The following line would load the assembly and execute it locally, (assuming that in fact the FibTest.exe file was available at that URL. However, we know that this .exe also references the FibObj.dll assembly, which is most likely stored on the same server online. This is not a problem for the CLR. When it comes time to load the type Fib, the FibObj.dll is found in the FibTest.exe assembly’s manifest, and then it is loaded from the same location that FibTest.exe was found. This is automatic behavior of the CLR.
Deploying managed code can be as simple as an XCopy but it gets even simpler still, with the web-deploy style. For enterprises, the network deploy is a very strong model, because versioning is as easy as revving a web-site, meanwhile network connections in most enterprise networks are reliable and fast.
There is a method of deploying assemblies that involves registration. The CLR maintains a cache of assemblies that is global to a system called the Global Assembly Cache or GAC for short. The GAC can only contain strongly named assemblies, and is primarily used for widely used reusable types such as the assemblies in the Framework Class Library itself.
Typically you will not install your assemblies to the GAC, but if you chose to do so, you can use a utility called GACUtil.exe to view, install, and uninstall assemblies that are installed in the GAC.
I have one last note about GAC-installed or Shared assemblies before moving on. If an assembly is stored in the GAC, and another assembly references it, the version in the GAC will be loaded. This is a way of having a single assembly stored on the file system that is loadable by every managed assembly in the system.

3.6. Versioning Assemblies

Assembly version information can (and should) be stored with assemblies in their metadata. This is done using another custom attribute called AssemblyVersionAttribute defined by the FCL.
Versioning a strongly named assembly can have a direct affect on how it is loaded. If an assembly is not strongly named, then runtime binding is based on the filename of the assembly. However, if an assembly is strongly named, then runtime binding is performed exactly to the assembly with the matching strong-name and version (plus other optional information such as culture).
It is also possible to deploy a policy file to the GAC to affect the binding of newer versions to assemblies expecting older versions.
This strong binding to assemblies is an important feature of the CLR, because as future versions of library assemblies (such as the FCL) are produced, we still want older code to bind to a compatible version. Meanwhile, we don’t want future versions to necessarily have to be compatible to a version several years older. The CLR versioning story removes all of the problems related to versioning of managed code, and also obliterates forever the DLL hell issues that have plagued Windows code in the past.
3.7. Runtime Binding

So here are the binding rules for a referenced assembly at runtime.
· If the referenced assembly is not strongly named then the CLR looks for the assembly by filename in the AppBase directory which is the directory (or network location) where the referencing assembly was found.

· If the referenced assembly is strongly named then

o The CLR starts by searching the GAC for a matching assembly (taking any relevant policy or configuration files into consideration).

o If the assembly is not in the GAC, then it looks in the AppBase directory for the assembly.

The Common Language Runtime’s deployment and binding functionality solves a lot of problems, and makes things very flexible for developers and administrators. But, don’t be surprised if this flexibility also causes some confusion when first dealing with a deployment of your own managed code. In the long run, it will begin to make sense, and you will appreciate the freedom that it brings when you decide to make version two of your software.
Exercise 3‑1 Build a managed multi-file assembly

1. Using the command line compiler, build the application in fig 3-1. Remember that you must use the /linkres compiler switch to link the .bmp file into the assembly.
2. Run the .exe to see that it works.
Exercise 3‑2 Build a strongly named multi-file assembly

1. Use the SN.exe tool with the /k switch to create a key-pair file.
2. Modify the Smiley.cs file to add the attribute to reference the key-pair file as shown in fig 3-1.
3. Build and run the executable.
Exercise 3‑3 Test Assembly Integrity Protection

1. Use MSPaint.exe to edit the Smiley.bmp file.
2. Without recompiling, re-execute Smiley.exe.
3. If your assembly was strongly named, then the CLR should refuse to load the Smiley.bmp file.
4. Reflection

By now, you are probably beginning to understand the importance of the metadata stored with binary managed code. For assembly versioning and binding metadata is necessary. However, there are a number of other areas where metadata becomes a factor.
You will find that as you write managed code, you become more and more reliant on the ability to discover information about code at runtime. This can come in many forms. Let me show you a quick example.
using System;

using System.Xml;

using System.Xml.Serialization;

class App{

 public static void Main(){

 XmlSerializer xml = new XmlSerializer(typeof(SomeType));

 SomeType obj = new SomeType();

 obj.intValue = 12;

 obj.stringValue = "SomeString";

 xml.Serialize(Console.Out, obj);

 }

}

public class SomeType{

 //[XmlAttribute]

 public Int32 intValue;

 public String stringValue;

}

Figure 4‑1 InstanceToXml.cs

The source code in fig 4-1 uses a class defined in the FCL called the XmlSerializer class. This class will take any public type and create XML out of an instance’s public fields and properties. As you might imagine, the XmlSerializer must use the metadata stored with the assembly to find out information about the type that it is converting into XML. The runtime discovery of metadata information is called Reflection and the XmlSerializer uses reflection to do its job. Here is the XML output that the XmlSerializer will create from the code fig 4-1
<?xml version="1.0" encoding="IBM437"?>

<SomeType xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <intValue>12</intValue>

 <stringValue>SomeString</stringValue>
</SomeType>

Figure 4‑2 InstanceToXml.cs Output Number 1

Note that the XML includes a tag for both the intValue field, and the stringValue field. Now if you were to uncomment the line in red, and rebuild and run the application, the XmlSerializer would produce the following output.
<?xml version="1.0" encoding="IBM437"?>

<SomeType xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" intValue="12">

 <stringValue>SomeString</stringValue>

</SomeType>

Figure 4‑3 InstanceToXml.cs Output Number 2

Now notice that with the addition of the XmlAttribute class on the intValue field in fig 4-1, the XmlSerializer now outputs XML where the intValue field is no longer represented as a tag, but rather becomes an attribute of the <SomeType> tag. This is but one example of using custom attributes to affect the way an FCL component behaves.
What is happening here is actually pretty simple. The SomeType class is built into InstanceToXml.exe assembly. Part of the assembly is the metadata that describes the type completely, including the fact that it has two public fields, named intValue and stringValue, of type Int32 and String. All of that information is stored in the assembly.
At runtime the XmlSerializer finds the metadata using reflection techniques, and uses the information to decide how the resulting XML should be structured. Meanwhile, custom attributes can be applied to any code element that is represented in metadata. The line of code in fig 4-1 that looks like this [XmlAttribute], tells the compiler to add custom metadata (of type XmlAttribute) to the field intValue of the SomeType class. Meanwhile, the XmlSerializer class knows about the XmlAttribute type, and looks for it specifically when creating XML from an instance. If it finds this attribute on the metadata, it adjusts its behavior to output the attributed field in a different way.
Here’s the bottom line. You get to adjust the way reusable code behaves by simply adding one attribute to your type’s metadata. This is just one of many examples of attributes used by the FCL. And, to be honest, custom attributes are just one of the ways that reflection can be useful in your managed software. Here are a few more.
· Late binding. It is possible to write code that looks for an assembly (perhaps in a known directory), and then reflects over the types in the assembly. If a certain type meets a certain criteria (such as a custom attribute, derivation hierarchy, or interface implementation), your code might choose to do something with the type.

· Runtime instantiation. It is possible to instantiate an instance of a type at runtime, and call methods on the type, even if the type did not exist when your assembly was built. Reflection is rich enough to allow your code to find out the necessary information to instantiate and use previously unknown objects.

· Custom attributes. Again, custom attributes are used heavily by the Framework Class Library. You can also define and look for your own custom attributes, when writing your own reusable objects.

Here is one more example, just to help solidify some of the concepts.
using System;

using System.Reflection;

class App{

 public static void Main(String[] args){

 Assembly me = Assembly.GetExecutingAssembly();

 IndentedWriter writer = new IndentedWriter();

 writer.WriteLine("Assembly: {0}", me.ToString());

 // Find Modules

 writer.Push();

 Module[] modules = me.GetModules();

 foreach(Module m in modules){

 writer.WriteLine("Module: {0}", m.ToString());

 // Find Types

 writer.Push();

 Type[] types = m.GetTypes();

 foreach(Type t in types){

 writer.WriteLine("Type: {0}", t.ToString());

 // Find Members

 writer.Push();

 MemberInfo[] members = t.GetMembers();

 foreach(MemberInfo mi in members){

 writer.WriteLine("Member: {0}", mi.ToString());

 }

 writer.Pop();

 }

 writer.Pop();

 }

 writer.Pop();

 }

}

class IndentedWriter{

 UInt32 spaces = 0;

 public void Push(){

 checked{spaces += 3;}

 }

 public void Pop(){

 checked{spaces -= 3;}

 }

 public void WriteLine(String format, params Object[] args){

 UInt32 tally = spaces;

 while(tally-- != 0) Console.Write(' ');

 Console.WriteLine(format, args);

 }

}

Figure 4‑4 ReflectYourself.cs

The somewhat lengthy example here in fig 4-4 builds an assembly that when run reflects over itself, and displays information about all of its modules, types, and type-members. If you were to add another couple of type definitions to the source for this sample, when you run it, these new types would also be reflected over. Additionally, if you were to build ReflectYourself.cs as a multi-module assembly, this would also be reflected in the program’s output.
Here is the output produced by the code in fig 4-4.
Assembly: ReflectYourself, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

 Module: ReflectYourself.exe

 Type: App

 Member: Int32 GetHashCode()

 Member: Boolean Equals(System.Object)

 Member: System.String ToString()

 Member: Void Main(System.String[])

 Member: System.Type GetType()

 Member: Void .ctor()

 Type: IndentedWriter

 Member: Int32 GetHashCode()

 Member: Boolean Equals(System.Object)

 Member: System.String ToString()

 Member: Void Push()

 Member: Void Pop()

 Member: Void WriteLine(System.String, System.Object[])

 Member: System.Type GetType()

 Member: Void .ctor()

Figure 4‑5 ReflectYourself.cs Output

Most of the interesting work in the sample in fig 4-4 is done by the types Assembly, Module, Type, and MemberInfo which are defined by the FCL. These are an important few of the reflection related types.
Note: The typeof() operator in C# returns an instance of type Type. You can use this operator in conjunction with a type in an assembly to reflect over the type.

I do have a word of advice. Reflection is a powerful (and interesting feature) of the CLR. You should familiarize yourself with what you can do with reflection. However, in your day-to-day programming you most likely will not use it too much. And it certainly is best not to contrive uses for reflection. On the flip-side, don’t be surprised someday when you need to solve some programming problem, and reflection poses a very elegant solution.

5. CLR Security

I want to start by telling you my favorite thing about security on the Common Language Runtime. It just works. In fact, this is such a true statement, that you will often find that you don’t think about it. However, it is important to understand at least the basics of how security works on the Common Language Runtime. And then if you are looking for detailed coverage on Code Access Security, please look for the tutorial later in this series, devoted to the topic.
The security model of the CLR is characterized as a code execution security model. Here are the two conflicting goals that the CLR achieves through code access security.
· Security. It is important to be certain that system resources are not undermined or inappropriately accessed in any way, whether purposeful or accidental.

· Freedom. It is also important for Internet distributed applications to be able to access, download, and execute code (assemblies) at the full speed of native machine language. These assemblies need not always be from trusted sources, and they need the freedom to do just what they are supposed to do, and nothing else.

Here is an example. Imagine that you own a very large machine with very powerful processing ability. You might wish to rent CPU time on your machine to various clients that wish to crunch numbers in one way or another. If you were using managed code to create your server, you could load your customer’s assembly, but you can choose to do so in such a way that regardless of what your customer’s assembly is programmed to do, it will only be allowed to process data in memory, and then communicate the result back to the customer. If the customer’s assembly attempts to access your local file system, display a window, access the registry, enumerate system processes, or do some other disallowed function, the runtime will throw a SecurityException, and their process will die. Meanwhile, your customer can do whatever in-memory processing they like, and you do not need to review their code.
This example may be a bit contrived, but it is going to become much more common to execute code locally that was retrieved across the Internet. In these cases, it is not reasonable to perform a code-review of the code before executing it.
5.1. Code Access Security

Code access security is very flexible, so I am going to describe default behavior here. By default when an assembly is loaded into a running process (or AppDomain), the system classifies the assembly into one of the following zones.
	Zone
	Description

	Local Computer
	This is code launched from the hard drive of the system.

	Intranet
(enterprise network)
	This is loaded from a file share on the network and run locally.

	Internet
	This is code downloaded from an Internet URL and run locally.

	Restricted
	Code from a restricted zone is not allowed to run.

The zone is established based on something called Evidence. Evidence can include a number of factors, such as the URL or location used to launch the code, the public/private key used to sign the code, or an Authenticode signature.
Once a zone is established for an assembly, then a policy is looked up for that zone. This policy is then applied to the assembly. Any code in any method in any type in this assembly will be restricted to the permissions described by the policy for that assembly.
By default, code executed locally has permission to make general access to the file system. Intranet or enterprise assemblies have limited file system access, and Internet code has no file system access. Meanwhile, code from all three zones has the permission to create GUI elements and display windows to the user.
This means of allowing for partial trust eliminates the necessity to display message boxes to the user asking them if they trust a particular piece of code. This is a huge improvement over ActiveX controls, and yet offers significant flexibility over a sandbox.

5.2. Code Access Security Details

If you are interested in detailed coverage of Code Access Security, please look for the future tutorial in this series devoted to the topic. However, I would like to take a little time here to describe how it is possible for code access security to work.
First, remember that managed assemblies are packaged as IL and metadata. This means that the CLR creates the actual machine language during JIT compilation. So managed assemblies do not have direct access to the CPU. Also, managed assemblies do not have direct access to memory. Memory objects are managed on the managed heap.
The CLR maintains a security stack that parallels the execution stack of a thread. This security stack keeps track of which assembly owns the method that is currently executing. Whenever a method calls into another method that will perform a sensitive action (such as access a file), the trusted method executes a demand. A demand simply causes the CLR to make sure that the calling code has the right to do what it is asking to do. In fact, a demand, by default, walks the stack all the way back to Main() to make sure that all of the code along the path has the right to do, what this method is about to do.
As this stack-walk is being performed, a security policy check happens each time a method call crosses an assembly boundary. It is this aspect of the CLR that makes an assembly a unit of security. This is because all of the methods in an assembly share the same permissions.
Because code access security is stack-based, and managed code does not have direct access to the stack, this security model is a sound way to allow un-trusted code to execute natively on a system.
Note: It is worth explicitly mentioning that an application can be comprised of several assemblies, and each of these assemblies may have different permissions associated with them. The result is that method A() may be able to do something (such as access a file) that method B() would be disallowed, even though both methods are being executed in the same application by the same end-user.

6. Automatic Memory Management

Throughout this tutorial I have made occasional reference to the Managed Heap. Now I will discuss the topic directly.
Managed code creates objects and memory buffers on a memory construct maintained by the CLR called the Managed Heap. Because the CLR manages all memory allocations and de-allocations for you, as well as all references to memory, it is not necessary for your code to explicitly free or destroy an object.
In addition to automatic object cleanup, the managed heap also offers memory protection.
· It is impossible for managed code to access memory, except through an object reference.

· It is impossible for managed code to coerce an object reference into an incompatible type.

· Objects in managed code have accessibility modifiers on their members such as public, private, protected, and internal. Member and type access restrictions are strictly enforced by the CLR. (Reflection can be used to gain access to private types and members, but it requires a security permission to do).

Together these facts have a significant effect on your managed applications. It is impossible for anybody but your class to mess-up its data in any way. It is impossible for an un-trusted assembly to read data from memory that it should not read. It is impossible for code to access a type that has already be freed, and it is impossible for an object or buffer to be leaked in memory.

6.1. The Managed Heap

When you allocate an object off the managed heap, the CLR decides how much memory is required to hold the data for the object. Then, the CLR attempts to allocate that much space at the end of the managed heap. If the required amount of memory is not available, the CLR starts the garbage collector (which I will discuss in a moment). If the required amount of memory is available, then a reference to memory is returned, and the type’s constructor is called.
Note: Because allocation on the managed heap always happens at the end, it is a very fast operation, akin to the stack allocation of a local variable.

6.2. Garbage Collection

If a garbage collection is necessary to allocate the new object, then the all of the managed threads in the process are stopped, and the garbage collector is started. Here is the process that the garbage collector follows to free memory.
· The garbage collector starts by assuming that every object on the managed heap is garbage.

· The garbage collector then begins to inspect memory locations known as Roots. These roots are reference variables that are global, local stack variables, or contained in the CPUs registers. What qualifies as a root differs depending on the instruction pointer for each thread in the process. (It is worth noting that a root table is created at JIT compilation time, so that the garbage collector does not have to do the work repeatedly).

· Starting with the roots, the garbage collector begins to add reachable objects to a queue of reachable objects. Any object that is added to the reachable queue is also inspected for object references, and this process is continued recursively.

· Once all of the reachable objects have been inspected, the garbage collector iterates through the queue of reachable objects, and begins moving them down in memory. This reclaims the memory used by garbage objects, and removes any holes in memory. (It is impossible for memory to become fragmented in a managed application).

· Once all of the objects in memory have been moved, the system re-inspects the remaining objects, and touches up their references, so that they point to objects’ new locations.

Once the garbage collector is finished, the managed threads in the process can be restarted, and the allocation operation that caused the collection to happen in the first place is re-tried.

Note: I am guilty of over-simplifying the garbage collector. First, the garbage collector of the CLR is a generational garbage collector. This means that the collector does not have to collect the entire managed heap, each time a collection is necessary. In brief, generations are a method of vastly improving the performance of garbage collection. Second, some objects require finalization before they are cleaned up. Finalized objects affect garbage collection in some significant ways. Third, objects in the managed heap can be temporarily pinned by the CLR if they are passed as a reference parameter to unmanaged code. Pinned objects do not move in memory, and are not collected.

6.3. Finalization

Finalization occurs on some objects after the garbage collector has deemed the object garbage and ready for collection. When finalization occurs, instance methods are called on the objects so that they can perform any final cleanup. Only objects that define a finalizer method will be finalized. Other objects are simply removed from memory when they are no longer referenced.
When you define types, it is your responsibility to decide whether or not it is appropriate to define a finalizer method for your type. Typically types do not require finalization.
Object finalization can be necessary, especially when an object contains a reference to an operating system resource such as a file handle, unmanaged memory buffer, or window handle. Most objects that you write will not require finalization. However, it is important to be aware of some finalization facts.
· To define a finalizer method for a type, in C# you use the ~ operator on a method with the same name as the type.

· Finalization is not the same as destruction in C++, because it does not occur at a deterministic time. In fact, the finalizer for many objects will not be called until the application exits.

· Code in a finalizer should be simple, and should not throw an exception. Code in a finalizer should not reference other objects on the managed heap (because the order of finalization is non-deterministic).

· Finalization negatively affects the performance of garbage collection. If you create an object that requires finalization, then you must provide a way for the user to explicitly clean-up your object.

· Code in a finalizer is primarily intended to be used for closing of resources in the underlying OS. (In other words, the finalizer exists for the purposes of interoperability).

6.4. The Dispose Pattern

Deterministic behavior by software is a good thing. This is when software does the same exact thing when executed in the same way. However, garbage collection (and finalization) happens non-deterministically. If you want your software to tell an object that it no longer needs it, you can call the Dispose() method on the object. The Dispose() method is defined by the IDisposable interface, and all types that implement a finalizer should implement the IDisposable interface.
This is not to say the Dispose() method is limited to types that implement a finalizer. You may find that a number of your reusable types have need for a Dispose() method to deterministically clean up their internal object references.
Note: I suggest that each time you use a type that you have never used before, that you check the type for the implementation of IDisposable. And then, in many cases, you will want to call the Dispose() method on instances when you are finished with them. This is not strictly necessary due to garbage collection and finalization, but it can drastically increase the determinism of your software, as well as potentially releasing expensive OS resources used by the components as early as possible.

If you are creating a type that requires finalization or a Dispose() method you should take care to follow the dispose pattern shown in the following code sample.
public class SomeType : IDisposable {

 // OPTIONAL

 public SomeType (...) { //Create resources }

 // OPTIONAL

 ~SomeType() { Dispose(false); }

 // OPTIONAL

 public void Close() { Dispose(); }

 public void Dispose() { Dispose(true); GC.SuppressFinalize(this); }

 // Do the actual clean-up

 protected virtual void Dispose(Boolean disposing) {

 if (disposing) {

 // Clean-up managed objects here

 }

 // Free unmanaged resource here

 }

}

Figure 6‑1 The Dispose() Pattern

Commonly, you will write types that do not require finalization or disposing.
6.5. Boxing and Unboxing

The CLR supports two kinds of types. Reference Types and Value Types. The difference is in where, in memory, the data for the type is stored.
The concepts of reference types and value types are best described by example. So let’s look at the String and Int32 types. The String type is a reference type, and the Int32 type is a value type.
But they do differ in the way variables for these types are handled. A String variable will always be a reference to a String object in memory, or it will be a null reference (indicating that it references no object). Meanwhile an Int32 variable is the value of the integer, and does not reference anything in memory. So you can assign the value null to a String reference variable, but you cannot assign the value null to an Int32 value variable.
The following two lines of code look very similar.
Int32 x;

String s;

But there is a fundamental difference. The first line declares an Int32 variable x, which means that an Int32 variable was created with an initial value of zero. However, the declaration of the String variable s did not cause an instance of String to be created, so s begins life as a null reference. It isn’t until you assign a String or new-up an instance of a String that s references an object.
Most types in the Framework Class Library (FCL) are reference types. However, most of the C# primitive types are value types (String being the noteworthy exception).
The way to know whether a type is a Reference type or a Value Type is to see how the type is listed in the FCL documentation. If is listed as a class, then it is a reference type. If it is listed as a struct(ure), then it is a value type.
You can decide whether your custom types are reference types or value types by using the class or struct keywords respectively. You should declare class types as the rule.
It is possible, however, for a value type to be copied onto the managed heap. This is necessary if an instance of a value type is cast to Object, or if a virtual method is called on the value type. For example you could create an instance of ArrayList and then use the Add() method to add Int32 instances to the list. The Add() method expects a reference to an instance derived from Object, so you need a reference to an Int32 on the managed heap.
When a reference is needed for a value type, the instance is said to be boxed onto the managed heap. What this means is that a new instance of the object (with a copy of the data) is created on the managed heap. If the boxed reference on the managed heap is ever cast back to the value type variable (as opposed to passed around as an Object reference), the value is unboxed back into the value type variable.
Boxing and unboxing can be important to be aware of, because objects are being created on the managed heap each time a boxing occurs. If you inadvertently write code that happens to box an instance of a value type, inside of a loop, you could end up with hundreds or thousands of unnecessary copies of the data in the managed heap.
Normally, boxing and unboxing happen to make your life easier. It allows you to treat primitive types as Object-derived types like any other, without having to have two types for each primitive, such as Int32.
7. The Common Language Runtime and Managed Code

The topics in this tutorial will help you to be successful as a programmer of managed code. So whether you choose to program with C#, VB.NET, C++, PERL, Java, etc., if you are targeting the .NET Framework, then you will benefit from a strong understanding of the underlying platform: the CLR.

