Description:  This document is a tutorial in a series of tutorials for programmers learning about the .NET Framework development environment.  What you will learn is what the Framework Class Library is and the important role that it plays in the .NET Framework.  The skills from this tutorial will help the C# or VB.NET programmer to take full advantage of the platform.  

Requirements:  You should be familiar with at least one programming language, such as C++, Pascal, PERL, Java or Visual Basic.  You should have some comfort with object oriented concepts such as instantiating and using objects.  You should be familiar with the different components of the .NET Framework.  (If you are not, please read the tutorial titled Introducing the .NET Framework).  You should be comfortable with general computer science concepts.  To do the exercises and run the examples you need a PC running Windows with the .NET Framework installed.

Table of Contents

Table of Contents
1
Figures and Exercises
3
1.
Working with the .NET Framework Class Library
4
1.1.
The Framework Class Library
4
1.2.
A Simple Example
4
1.3.
Using the FCL
5
1.4.
The .NET Framework SDK Documentation
6
1.5.
Using FCL Documentation for Types
6
2.
Primitive and Common Types
9
2.1.
System.Object
10
2.2.
Primitive Types
11
2.3.
System.Array
12
2.4.
Time
13
3.
Working with Strings
14
3.1.
System.String
15
3.2.
System.Text.StringBuilder
16
4.
Working with Files & Streams
16
4.1.
System.IO.Stream
17
4.2.
Device Streams
17
4.3.
Logical Streams
18
4.4.
Practical Stream Programming
21
5.
Collection Classes
21
5.1.
Common Collection Classes
21
5.2.
Collection Class Interfaces
22
5.3.
Creating Your Own Collection Classes
24
6.
Non-Instantiable Types
25
6.1.
System.Math
25
6.2.
System.Convert
25
6.3.
System.Console
25
7.
Application Scenarios and the FCL
26
8.
The Framework Class Library
26
Figures and Exercises

Figure 1‑1  FileOut.cs
5
Figure 1‑2  Sample SDK Reference Topic
7
Figure 2‑1  Interesting Methods on System.Object
10
Figure 2‑2  Object.cs
11
Figure 2‑3  Arrays.cs
13
Figure 2‑4  DateTime.cs
13
Figure 3‑1  Strings.cs
15
Figure 3‑2  Strings.cs (using StringBuilder)
16
Figure 4‑1  FileRev.cs
18
Figure 4‑2  Base64Convert.cs
20
Figure 4‑3  Stream Readers and Writers
21
Figure 5‑1  Common Collection Classes
22
Figure 5‑2  Collection Class Interfaces
23
Figure 5‑3  Foreach.cs
24
Figure 7‑1  Application Scenario -> Namespace
26
Exercise 1‑1  Create FileOut.exe
9
Exercise 2‑1  Use Object as a generic reference type
11
Exercise 2‑2  Using Arrays
14
Exercise 2‑3  Working with time
14
 
1. Working with the .NET Framework Class Library

The Framework Class Library, or FCL, is a huge library of reusable types for use by managed code.  (If you are not familiar with the terms like, .NET Framework, Managed Code, C#, and Common Language Runtime, please read the first tutorial in this series Introducing the .NET Framework with C#).  Because the FCL is so large, it can be helpful to be shown a quick tour of the library, so that you know where to start when you are writing your own managed software.
Before jumping into this tutorial, I would like to give you an idea of how this tutorial is arranged.  Here is what you will get from this tutorial.
·  It will show you how to navigate around the help, and SDK (Software Development Kit) documentation effectively.

· It will show you how to use some of the most common reusable types in the FCL.

·  While describing some of the most common types in the FCL, this tutorial will point out common design trends of the FCL.  This will help you to learn how to learn the FCL more effectively.

When you have finished reading this tutorial, you will be comfortable with some of the most commonly used types in the Framework Class Library.  And hopefully, you will have had a chance to begin to become comfortable with the FCL, as a library.  If you will be writing managed code, whether it is C#, Visual Basic .NET, PERL, Java, etc., you will be using the types in the FCL a lot.
1.1. The Framework Class Library

The Framework Class Library is an object oriented library for use in building component based applications.  If you like, you can use it like any other library or API.  That is to say that you can write applications that make use of the objects in the FCL to read files, display windows, and do various tasks.  But, to exploit the true possibilities, you can extend the FCL towards your applications needs, and then write a very thin layer that is just “application code”.  The rest is reusable types and extensions of reusable types.
The FCL is a class library, much like others that existed before it; but it has been designed for extendibility and composeability.  Many classes in the FCL promote this kind of programming, and so should the reusable component classes that you write.  To reach this end you must be comfortable with the FCL in general.
1.2. A Simple Example

It’s always good to start with a simple example, and work from there.  The following C# source code makes use of a couple of the types in the FCL to read a file and display its contents to the console window.
using System;

using System.IO;
 

class App{

   public static void Main(String[] args){

      try{

         StreamReader sr = new StreamReader(args[0]);

         Console.WriteLine(sr.ReadToEnd());

      }catch{

         Console.WriteLine("Usage: FileOut [file]");

      }

   }

}

Figure 1‑1  FileOut.cs

The code in Figure 1‑1 shown in red is really the only FCL related lines of code.  The first two red lines indicate which Namespaces of the FCL we are using from this source code module.  (I will cover Namespaces more in a bit).  The remaining red lines actually use the StreamReader and Console reusable types defined by the Framework Class Library.
Note: The StreamReader type exists in the System.IO namespace.  In fact the actual name of the type is System.IO.StreamReader.  Similarly, the fully qualified name of the Console type is System.Console, because it exists in the System namespace.  Notice that these are the two namespaces referenced by the first two lines of code in Figure 1‑1.

1.3. Using the FCL

With the FCL it is best to learn how to use the library itself, rather than learning about specific types in the library.  This is because the Framework Class Library is so expansive and you will use it every time you write managed code.  I am going to give you the necessary information for you to learn to learn about the Framework Class Library.
The following is a list of points about the FCL that will help you to learn to use the library.
· The many classes, interfaces, structures and enumerated values in the Framework Class Library are collectively referred to as types.

· The various types in the framework are arranged in a hierarchy of namespaces.  This solves the problem of name collisions.  But in day-to-day use namespace help programmers to find types that solve a certain kind of problem, and they can help programmers to find more than one type that deal with the same problem (such as IO types that live in the System.IO namespace). 

· Namespaces themselves live in a hierarchy and are arranged as words separated by the period “.” character.  From the CLR’s point of view a type’s name is its fully qualified name including namespaces.  Therefore we may write code that uses a Stream class or a Form class, but in IL these types are represented as System.IO.Stream and System.Windows.Forms.Form respectively.

· Languages such as C# allow you to indicate which namespaces a specific source code file will be referencing.  This way in the source code you can refer to the types in their abbreviated form.  The first two red source code lines in Figure 1‑1 are an example of the using statement in C#.  

· The System namespace is a good place to look for types that are useful across a wide number of different types of applications.

· All types must have a base class (including types that you define in your).  The exception to this rule is the System.Object type which is the base type for all types in the system.  If you create a class that does not explicitly declare a base class then the compiler implicitly defines its base class to be Object.

The facts in this list plus comfort with the .NET Framework SDK Documentation will really bootstrap your skills with managed code.
1.4. The .NET Framework SDK Documentation

When you install Visual Studio .NET or the .NET Framework SDK you should make a point of installing the full documentation for the SDK.  This is important.  The SDK Documentation includes a wealth of great information.  In fact, there is so much information in the docs that it can be overwhelming, so I am going to point out a limited set of topics that you should read first.
The first topic in the table of contents for the .NET Framework SDK docs is called Getting Started with the .NET Framework->Overview of the .NET Framework.  It is a short read and you should read it first.  It is not nearly as detailed as this tutorial, but it will get you started with the SDK docs, and point you in the direction of other interesting topics.
The second place to look is under .NET Framework Reference->.NET Framework Class Library.  This is the beginning of the reference documentation for all of the reusable types contained in the FCL.  The references are arranged by namespace, and you should read the starting topic .NET Framework Class Library just to familiarize yourself with the namespaces in the FCL.
All of the reading I have suggested will most likely take less than a couple of hours.  Then, after this point, you need only to refer to the documentation for one type at a time.
1.5. Using FCL Documentation for Types

Using the SDK documentation for a given type will likely be a daily or even hourly event when you first start writing managed code.  So a practical exposure to the format can be helpful.
The first time that you use a new type you should look up the type in the reference documentation.  Enter the name of the type (for example, System.Windows.Forms.Form or just Form) into the index tab of the documentation and select the topic for that type.  The starting topic for a type can be very helpful and you should read it entirely.  Then, as you use the different member variables and member methods you can read their topics as needed.  Here is an example of a topic from the FCL reference documentation.
[image: image1.png]Represents a window or dialog box that makes up an application's user interface.
For a list of all members of this type, see Form Members.

Obiect
MarshalByRefobiect
Component
Control
ScroliableControl
ContainerControl
Form
CollectionEditor. CollectionForm
CalendarAutoFormatDialoa
RegexEditorbialog
ComponentEditorform
ErintereviewDialoa

public class Form : ContaimerControl

Remarks

A Form is a representation of any window displayed in your application. The Form class
can be used to create standard, tool, borderless, and floating windows. You can also use

AMAAAAAANANANAAABAAAAA AN AR NN
VBNV W N P W
Example

The following example creates a new instance of a Form and calls the Showbialog method
to display the form as a dialog box. The example sets the FormBorderStyle, AcceptButton,
CancelButton, MinimizeBox, MaximizeBox, and StartPosition properties to change the
‘appearance and functionality of the form fo a dialog box. The examle also uses the Add
method of the form's Controls collection to add two Button controls. The example uses the
HelpButton property to display 3 help button in the caption bar of the dialog box.

public veid CrascaMyFomm()

¢
1/ Create 2 new instance of the form.
Form forml = new Form();

/7 Creste tuo butcons to use ss vhe sccept snd cancel buttons.

AAAANANANAAAAAAAAANANANAA LA AN
NN WV VW BN AW W N e

7/ Display the form as a modal dialog box.
Zorml Showdislog();
}
Requirements
Namespac

: System. Windows. Forms

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000,
Windows XP

Assembly:

ystem.Windows.Forms (in System.Windows.Forms.dl)
See Also

Form Members | System.Windows.Forms Namespace




[image: image2.png]Represents a window or dialog box that makes up an application's user interface.
For a list of all members of this type, see Form Members.

Obiect
MarshalByRefobiect
Component
Control
ScroliableControl
ContainerControl
Form
CollectionEditor. CollectionForm
CalendarAutoFormatDialoa
RegexEditorbialog
ComponentEditorform
ErintereviewDialoa

public class Form : ContaimerControl

Remarks

A Form is a representation of any window displayed in your application. The Form class
can be used to create standard, tool, borderless, and floating windows. You can also use

AMAAAAAANANANAAABAAAAA AN AR NN
VBNV W N P W
Example

The following example creates a new instance of a Form and calls the Showbialog method
to display the form as a dialog box. The example sets the FormBorderStyle, AcceptButton,
CancelButton, MinimizeBox, MaximizeBox, and StartPosition properties to change the
‘appearance and functionality of the form fo a dialog box. The examle also uses the Add
method of the form's Controls collection to add two Button controls. The example uses the
HelpButton property to display 3 help button in the caption bar of the dialog box.

public veid CrascaMyFomm()

¢
1/ Create 2 new instance of the form.
Form forml = new Form();

/7 Creste tuo butcons to use ss vhe sccept snd cancel buttons.

AAAANANANAAAAAAAAANANANAA LA AN
NN WV VW BN AW W N e

7/ Display the form as a modal dialog box.
Zorml Showdislog();
}
Requirements
Namespac

: System. Windows. Forms

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000,
Windows XP

Assembly:

ystem.Windows.Forms (in System.Windows.Forms.dl)
See Also

Form Members | System.Windows.Forms Namespace




[image: image3.png]Represents a window or dialog box that makes up an application's user interface.
For a list of all members of this type, see Form Members.

Obiect
MarshalByRefobiect
Component
Control
ScroliableControl
ContainerControl
Form
CollectionEditor. CollectionForm
CalendarAutoFormatDialoa
RegexEditorbialog
ComponentEditorform
ErintereviewDialoa

public class Form : ContaimerControl

Remarks

A Form is a representation of any window displayed in your application. The Form class
can be used to create standard, tool, borderless, and floating windows. You can also use

AMAAAAAANANANAAABAAAAA AN AR NN
VBNV W N P W
Example

The following example creates a new instance of a Form and calls the Showbialog method
to display the form as a dialog box. The example sets the FormBorderStyle, AcceptButton,
CancelButton, MinimizeBox, MaximizeBox, and StartPosition properties to change the
‘appearance and functionality of the form fo a dialog box. The examle also uses the Add
method of the form's Controls collection to add two Button controls. The example uses the
HelpButton property to display 3 help button in the caption bar of the dialog box.

public veid CrascaMyFomm()

¢
1/ Create 2 new instance of the form.
Form forml = new Form();

/7 Creste tuo butcons to use ss vhe sccept snd cancel buttons.

AAAANANANAAAAAAAAANANANAA LA AN
NN WV VW BN AW W N e

7/ Display the form as a modal dialog box.
Zorml Showdislog();
}
Requirements
Namespac

: System. Windows. Forms

Platforms: Windows 98, Windows NT 4.0, Windows Millennium Edition, Windows 2000,
Windows XP

Assembly:

ystem.Windows.Forms (in System.Windows.Forms.dl)
See Also

Form Members | System.Windows.Forms Namespace




Figure 1‑2  Sample SDK Reference Topic

Starting at the top of Figure 1‑2 and reading to the bottom, here are some noteworthy parts of the reference docs for a type.
·  The top indicates the name of the type and the type of the type.  In this example the name is Form and the type is a class (as opposed to a structure or interface, etc.).

· Following this is an abbreviated hierarchy indicating the derivation heritage from System.Object on up to the topic type and sometimes beyond if the type is a base class for other classes in the FCL.

· The Remarks section in any topic is likely to include a detailed description of the purpose of a type, as well as how to use it and links to companion types in the FCL.  In the case of Figure 1‑2 the Remarks section included so much information that I had to excerpt it out of the figure so that it would fit on a single page in this tutorial.

· Many type topics in the FCL reference documentation include Example sections complete with source code and a brief description.  This can be one of the most helpful parts of the documentation!  If you are having trouble conceptualizing the use of a particular type, just cut and paste the sample code into a quick C# project and try it out directly.  Again, the source code for the Form topic was lengthy enough that I excerpted out the bulk of the source code so that Figure 1‑2 would fit on a single page.

· The Requirements section of the topic is often one of the most important and commonly referenced parts of the reference documentation.  One reason for this is that it includes the namespace of the type.  In this example the Form type is in the System.Windows.Forms namespace.  The namespace listed at the bottom of the help topic tells you what using statement you should add near the top of your source-code module.  If you are using the Form type you would commonly include this line of code in your .cs file.
using System.Windows.Forms; 

· Another key piece of information in the Requirements section of a type’s help topic is the assembly in which the type exists.  All managed types must exist in a file (or group of files) known as an assembly.  (In fact even a simple C# executable is technically a managed assembly).  The FCL is published as a collection of dozens of assemblies.  When one assembly references a type in another assembly, the compiler needs to know about the referenced assembly.  This means that if your code references a type in the FCL, then you need to make sure that your project references that type’s assembly.

o       If you are using the command line compiler, the /r compiler switch is used to indicate an assembly reference.

o       If you are using the Visual Studio .NET environment to build your projects you can add a referenced assembly to a project using the add reference menu item.

· At least two important pieces of information are included in the See Also section of a FCL type reference topic.  These are the links to the topics for the type’s members and the type’s namespace.  The type members topic describes in brief all of the member methods, constructors, properties and member fields of a type.  These topics detail what a type can do.  The namespace topic for a type is a great way to find related types in the FCL.  If you know that you know one class that you need, you can link to its namespace topic and find other classes that are likely to be helpful for your task.

It may seem strange, at first, to approach the reference documentation with the rigor expressed in the preceding bullets.  But, if you do, you will master the Framework Class Library in no time.

Note:  The remainder of this tutorial is focused on various types and groups of types in the FCL that are commonly used.  You will use many more types than the ones mentioned in this tutorial, but these types are some of the most regularly used.

Exercise 1‑1  Create FileOut.exe

1. The source code in Figure 1‑1 implements a command line utility that prints the contents of the file to the console window. 
2. Copy this source code to a file named FileOut.cs and compile it with the C# compiler. 
3. Test the resulting executable. 
4. Use the SDK Documentation to lookup each major type used in the FIleOut.cs sources.  
a. Read the overview for each type. 

b. Read the help for the methods and constructors used in the sample. 

2. Primitive and Common Types

The .NET Framework and Common Language Runtime create a slightly unusual object environment for managed code.  Unlike C++ and Java, for example, everything in managed code is an object (and is derived from System.Object).  Although this is similar to Java, managed code takes this idea a step further by making all integer, Boolean and numeric types objects (derived from System.Object), as well as the primitive string and character types.  
This homogenous view of data in the system as objects can be a very pleasant environment to program in.  But it does have some interesting effects that may not be immediately obvious.  
For example, the int type in C# is actually an alias for (is synonymous with) the Int32 type in the FCL.  In fact you will see that in my source code I always use the FCL name for types.  The Int32 type is a regular object type, ultimately derived from System.Object, and it implements methods and everything else that you would expect from an object.
The bottom line is that the lines between primitive types and reusable object types have become very blurry with managed code.  Each primitive type is defined by the FCL, however primitives also enjoy built-in support by the Common Language Runtime (where complex types like Form or ArrayList, do not).
2.1. System.Object

All objects in managed code are derived from the System.Object type.  The System.Object type is defined by the FCL, and has no fields and a minimal set of methods that you can call.  The following chart shows some of the more interesting methods defined by Object.  Remember that you can call these methods on any instance of any type, because everything is ultimately derived from Object.
	Method
	Description

	GetType()
	Returns an instance of the System.Type type.  This type can be used to find the exact type of an instance, regardless of the type of the referring variable.  You can use GetType() and the typeof() operator to make type comparisons.

	virtual ToString()
	Returns a string representation of the state of an instance.  A derived class can override this method to return a string appropriate to its type.  Many of the types in the FCL implement the ToString() method, which can be very useful for debugging.  The default implementation returns the name of the type.

	virtual Finalize()
	Called by the garbage collector when an instance is being cleaned up.  Most types do not override the default implementation of Finalize().  However, it is possible for a derived type to implement custom finalization.

	static ReferenceEquals()
	Returns a Boolean value indicating whether or not two references refer to the exact same object in memory.  It is important to use this method when you need to check reference equality, rather than using the == operator.  This is because for many types == will return true for two different objects that contain the same data.  


Figure 2‑1  Interesting Methods on System.Object

The preceding figure does not show all of the methods that Object implements, but it does show the most commonly used methods.
System.Object is not only the base class for types in managed code, but is commonly used as a generic reference type.  For example, if you were maintaining an array of instances that are not particularly related (in terms of derivation hierarchy), you can still maintain them in a single array of type Object.  Similarly, if you are defining a method that can take any instance as a parameter, you would use the System.Object type for your parameter.
Note: Object is not an abstract type.  What this means is that you can actually create an instance of the System.Object type.  This instance has no data, and very limited functionality.  However, occasionally this feature is used to create place-holder objects, where a null reference is not appropriate for whatever reason.

The following example shows the use of the Object type as a general reference variable.  It also shows the use of the virtual ToString() method.
using System;

 

public class App{

   public static void Main(){

      // Create an array of Object references

      Object[] objs = new Object[3];    

      objs[0] = "Some String";        // create a new string

      objs[1] = new Int32[]{1, 2, 4}; // create a new Int32 array

      objs[2] = new Object();         // create a new Object instance

 

      for(Int32 index = 0; index<3; index++){

         Console.WriteLine("Array index {0} refers to {1}", 

            index, objs[index]);

      }

   }

}

Figure 2‑2  Object.cs

Exercise 2‑1  Use Object as a generic reference type

1. Build and execute the code in Figure 2‑2. 
a. Notice that two of the types use the default implementation of ToString(), while one implements its own functionality for the method. 

2. Modify the array to have more than three elements, and assign instances of different types to the new elements. 
3. Build and test the modification. 
2.2. Primitive Types

Officially speaking, managed code does not define primitive types.  Many programming languages can be used to target the .NET Framework, and each language defines for itself what types are primitive to its syntax.
In general, primitive types have direct compiler support for use in expressions such as assignment and comparisons.  Compilers also have built in support for conversions from one numerical primitive type to another.  This is what makes primitive types different then other types defined by the Framework Class Library.
Note: In this tutorial, I am going refer to a number of types as primitive.  Understand that not all languages that target the .NET Framework will recognize each of these types as primitive.

Rather than list all of the primitive types, I would like to show a list of interesting points about primitive types.
· Numerical integer types are named for their bit-size.  For example, System.Int32 is a 32-bit integer value type.  The FCL also defines System.Int16, System.Int64, and System.Byte.

· he unsigned integer types all start with a U (except for System.Byte).  System.UInt32 and System.UInt16 are two examples.

· The FCL defines three numeric types that are not integers.  These are the System.Double, System.Single, and System.Decimal types.  Double and Single comply with the IEEE 754 standard for binary floating point arithmetic (and are likely to be accelerated on most modern CPU’s).  The Decimal type is for ultra-high precision mathematics.

· The Framework Class Library defines a string type called System.String that is used as a primitive by most languages.  Similarly, the FCL defines a System.Char type.

· Most primitive types define static fields containing their maximum and minimum values.  For example, UInt32.MinValue resolves to zero, and UInt32.MaxValue resolves to 4,294,967,295.

·  Some primitives implement more interesting constant field values such as Double.Epsilon, String.Empty, and Single.PositiveInfinity.  These values can be used for assignment or comparison, like any other instance of the type.

The most important thing that you can take away from this discussion on primitives in the FCL is that they are types like any other.  As types, they implement some useful methods.
2.3. System.Array

Whenever you create an array in managed code, the compiler automatically derives a type from System.Array.  This means that your array type can be used with array syntax and the array itself can be used as an object derived from System.Array.  See the following code for an example.
Using System;

 

class SomeType {

   public static void Main(){

      // Define an array of Int32's

      Int32[] ints = new Int32[]{5, 1, 3, 2, 4};

      // Define an array of references to SomeType objects

      SomeType[] types = new SomeType[3];

 

      // Print the types of the two arrays

      Console.WriteLine(ints.GetType());

      Console.WriteLine(types.GetType());      

 

      // Sort the array of ints, and print each element

      Array.Sort(ints);

      for(Int32 index=0; index<ints.Length;index++){

         Console.WriteLine(ints[index]);

      }

   }

}

Figure 2‑3  Arrays.cs

Notice that in Figure 2‑3 the code defines two arrays.  One is an array of primitive types, and the other is an array of references to a custom type.  The code in red show the instances of the arrays being used as objects derived from System.Array.  For example, the code ints.Length is accessing the Length property on the instance.  Meanwhile, the code in green shows an array being accessed with more typical array syntax.
Finally, the code shown in yellow shows a reference to an array object being passed to a static method defined on the System.Array type.
The Array type is a very full functioned type that implements a variety of useful methods and interfaces.  
2.4. Time

The Framework Class library implements two useful time-related classes that you will find occasional use for.  These are the System.DateTime and Sytem.TimeSpan classes.
using System;

 

class App{

   public static void Main(){

      DateTime now = DateTime.Now;

      Console.WriteLine("The current time is {0}", now);

 

      DateTime future = DateTime.MaxValue;      

      Console.WriteLine("An instance of DateTime can't"+

         " exceed {0}", future);

 

      TimeSpan delta = future-now;      

      Console.WriteLine(

         "That is {0} days from now", delta.TotalDays);

   }

}

Figure 2‑4  DateTime.cs

As you can see from the code in Figure 2‑4 the DateTime type is used to store a date and time, and the TimeSpan type is used to store a distance or length of time.  Both of these types are defined as value types by the Framework Class Library.  In the framework class library you will see value types referred to as structures.
Note:  Remember that value types are lightweight types that are always allocated on the stack (or as a member of a more complex type), rather than the managed heap.  Value types are not garbage collected, but are implicitly reclaimed when a method exits, or when it’s encapsulating type is freed.

Both the DateTime and TimeSpan types have constructors to construct specific values, as well as useful properties such as the DateTime.Now property which returns an instance representing the current date and time.  Finally, you can construct an instance of the TimeSpan type by subtracting two instances of the DateTime type.  This is a good example of operator overloading and general object oriented programming with the Framework Class Library.
 
Exercise 2‑2  Using Arrays

1. Build and execute the code in Figure 2‑3. 
2. Add code to the end of the module to try other methods on the Int32[] array named ints. 
a. Try adding code that uses Array.Reverse(). 

b. Try adding code that uses Array.BinarySearch(). 

Exercise 2‑3  Working with time

1. Build and execute the code in Figure 2‑4. 
2. Modify the code to display the date and time of the day exactly one year and one day from now. 
a. Hint:  You can add an instance of the TimeSpan type to an instance of the DateTime type to get a new instance of DateTime. 

3. Build and test the modification. 
3. Working with Strings

Common Intermediate Language (IL) has primitive support for the System.String  type as a data type.  As such, most (or perhaps all) languages that target the .NET Framework will treat the String type as a primitive.  Because the String type is so common in programming, it is worth taking some time to discuss it.
Note:  The string type in C# is just an alias for the System.String type defined by the Framework Class Library.  These two types are synonymous, and there is no difference between the two.

3.1. System.String

An instance of the String type is a reference type representing a single immutable string of characters in the managed heap.  Strings are common in programming, and you are probably already familiar with the concepts of string types.  However, the immutability of the String type is somewhat unique.
When a data-structure or instance is said to be immutable, this means that its data cannot change after it has been created.  So applying this rule to the String type, this means that once you use the new keyword to create an instance of a string, that string keeps its original value until it is removed from the managed heap through garbage collection.
The designers of the Framework Class Library made the String type an immutable type for a number of reasons, most of them relating to performance and interoperability with unmanaged code.  (It is very common for the FCL to pass a string to an API function of the underlying OS, and certain optimizations can be made if it is safe to assume that the characters of a String will never change).  
Because the String type is immutable, it is easy to inadvertently write code that creates dozens of interim instances of String on the managed heap.  Take a look at the following code sample.
using System;

 

class App{

   public static void Main(){

      String result = ConvertUInt32ToString(2001);

      Console.WriteLine(result);

   }

 

   static public String ConvertUInt32ToString(UInt32 source){

      String str = String.Empty;

      UInt32 order = 1000000000;

      while(order != 0){

         str += Convert.ToChar(source/order+48);

         source %= order;

         order /= 10;

      }

      return str;

   }

}

Figure 3‑1  Strings.cs

This code converts an unsigned integer value into an instance of a String.  (Ignore the fact that with the FCL, you would never have to write such code, since the Convert class implements dozens of useful conversion functions.)  The line of code shown in red may look like a typical way to concatenate strings.  However, what’s really happening is each time a character is being added to the string, the old string is discarded, and the str variable points to a new instance of string.  In the ConvertUint32ToString() method shown in Figure 3‑1, ten unnecessary instances of String are being created temporarily.  These extra instances are then abandoned for garbage collection by the method.
Note:  Depending on your perspective, this code is not necessarily a bug.  Garbage collection will eventually cleanup the extra instances of String, so the only real effect of code like this is potential negative performance.  However, if performance is not a concern for your particular application, the code shown in Figure 3‑1 may represent the most readable way to concatenate strings.  These are the decisions that make programming an art rather than an exact science.

3.2. System.Text.StringBuilder

You should not be surprised to find out, however, that the FCL defines a type that is used for building instances of String.  The StringBuilder type is not a string class, but rather is a class for the interim state of a string under construction.  The StringBuilder class is fairly simple, including methods for appending characters, strings and other types.  Unlike the String class, the StringBuilder class is a mutable type and can change as much as is needed.  Internally it maintains a growable buffer of characters.
The following modifications to the code in Figure 3‑1 uses the StringBuilder class to remove all of the unnecessary instances of String.
using System;

using System.Text;

 

class App{

   public static void Main(){

      String result = ConvertUInt32ToString(2001);

      Console.WriteLine(result);

   }

 

   static public String ConvertUInt32ToString(UInt32 source){

      StringBuilder str = new StringBuilder(10);

      UInt32 order = 1000000000;

      while(order != 0){

         str.Append(Convert.ToChar(source/order+48));

         source %= order;

         order /= 10;

      }

      return str.ToString();

   }

}

Figure 3‑2  Strings.cs (using StringBuilder)

Now the code in ConvertUInt32ToString() does not create any superfluous objects.  In fact, the FCL has special support for memory buffers in StringBuffer and String.  When you call the ToString() method of an instance of StringBuilder, the FCL uses the memory buffer in the StringBuilder instance for the new instance of String.  This optimization can really improve memory performance in code that builds a lot of string data. 
4. Working with Files & Streams

Working with files is common in computer programming.  With managed code, files are accessed through an abstraction called a stream.  The .NET framework actually defines a number of Stream classes for communications with files, network connections, and memory.  For the most part, what is true of one Stream class is true of all of them.  This is one of the areas where the object oriented nature of the .NET Framework really shines.
4.1. System.IO.Stream

The first class you should know about is the System.IO.Stream class.  The Stream class is an abstract base class from which a number of different classes are derived (we will get to these shortly).
The Stream class provides a template for the derived classes that actually communicate with hardware devices such as files.  Fundamentally streams support three functions: reading data, writing data, and seeking to a location in the data stream.  The Stream class offers Read(), Write() and Seek() abstract methods that must be implemented by derived types.  Because reading, writing, and seeking are all optional abilities of Stream-derived classes, the Stream class also defines read-only Boolean properties that indicate the abilities of the particular instance called CanRead, CanWrite and CanSeek.
Note:  It is best to define your software to deal with streams in terms of the Stream class as much as possible.  (Rather than using references to specific stream types).  This is especially true of reusable component code.  Doing this helps your code to be more modifiable as your needs change.

4.2. Device Streams

The device stream classes are derived from the Stream class, and they implement the code necessary to read and write from specific devices.  Currently the Framework Class Library ships with three device stream classes.  These are FileStream, NetworkStream, and MemoryStream.  The MemoryStream class is an interesting object type that lets you treat memory as a stream.  This can be useful for transient or temporary data in your application.
None of the device stream classes are abstract.  These are concrete derivations of the Stream base class.  Each derived class adds a few methods and properties specific to the features of its underlying device.  However, you will notice that the main difference between the different stream types is their constructors.
The FileStream class is the most commonly used stream class in the FCL, so let’s look at an example that uses the FileStream class.
using System;

using System.IO;

 

class App{

   public static void Main(String[] args){

      try{

         // Create stream object and memory buffer

         Stream stream = new FileStream(args[0], 

            FileMode.Open, FileAccess.ReadWrite);
         Byte[] memBuf = new Byte[stream.Length];

 

         // Read the bytes in and reverse them

         stream.Read(memBuf, 0, memBuf.Length);

         Array.Reverse(memBuf);

 

         // Seek to beginning, and write the bytes out

         stream.Seek(0, SeekOrigin.Begin);
         stream.Write(memBuf, 0, memBuf.Length);

      }catch{

         Console.WriteLine("Usage: FileRev [file]");

      }

   }

}

Figure 4‑1  FileRev.cs

The code in Figure 4‑1 reverses the contents of a file.  This may not be the most useful application ever written, but it does show the use of the FileStream and Stream classes nicely.  Notice that the line of code in red shows the creation of a FileStream object, but the references is stored in a variable of type Stream.  This is the only line of code that would have to change if you wanted to modify this code to work with another Stream-derived type.  
All three of the Read(), Write() and Seek() methods are also shown in this sample in green.  Finally, the FileStream and Stream classes make use of helper enumerated types for indicating details such as requested type of file-access, and seek direction.  See the code in yellow for example usage of several enumerated types.
Finally, it is entirely possible to derive your own classes from Stream for implementing device communication.  It is more common to create specialized versions of the existing device streams such as a TemporaryFileStream class derived from FileStream.  However, depending on the needs of your software (and the hardware attached to your systems) you may find a need for creating a Stream-derived class for some device other than the network or a file.
4.3. Logical Streams

In addition to the device Stream-derived classes, the FCL defines a number of logical Stream-derived classes.  These classes are not associated with any specific hardware device, but rather serve a logical purpose and can be composed with other Stream-derived classes.  An example of this is the BufferedStream class.  The constructor of the BufferedStream class takes a reference to Stream.  When you create an instance of the BufferedStream class you begin using another instance of stream, but the input and output are now buffered in memory.
At this time the FCL only ships with two of the composeable or logical stream types.  These are the BufferedStream and the CryptoStream classes.  We have already mentioned the BufferedStream, and the CryptoStream is used for encrypting and decrypting data as it is written to and read from an underlying Stream.
You are encouraged to design your own composeable Stream-derived types when you find that you need to bake or manipulate the data in some specific way as it passes through the various stream classes.  The possibilities are limitless.  For example, you could create a CompressionStream class, and then compose instances of it with instances of the BufferedStream class which was composed with an instance of the NetworkStream class.  This would give you compressed, buffered network communication.
The following code sample shows the use of the CryptoStream class to convert a file to and from its Base64 representation.
using System;

using System.IO;

using System.Security.Cryptography;

 

class App{

   public static void Main(String[] args){

      try{

         // Parse the possible switch

         Boolean revert = false;

         Int32 argIndex = 0;

         if(args[0][0] == '/'){

            if(args[0][1] != 'r'){

               throw new ApplicationException("Invalid Switch");

            }

            argIndex++;

            revert = true;

         }

         // Convert the file

         ConvertFile(args[argIndex], args[argIndex+1], !revert);                  

      }catch{         

         Console.WriteLine(

            "Usage: Base64Convert [/revert] [from-file] [to-file]");

      }

   }

 

   static void ConvertFile(String fromFile, 

      String toFile, Boolean toBase64){

      // Create a from stream

      Stream fromStream = 

         new FileStream(fromFile, FileMode.Open, FileAccess.Read);

      // Create a to stream

      Stream toStream = 

         new FileStream(toFile, FileMode.Create, FileAccess.Write);

 

      // Create the in memory buffer

      Byte[] buffer = new Byte[fromStream.Length];

      // Depending on direction, replace the reference to one of 

      // the streams with an instance of CryptoStream

      if(toBase64){

         toStream = new CryptoStream(toStream, 

            new ToBase64Transform(), CryptoStreamMode.Write);
      }else{

         fromStream = new CryptoStream(fromStream,

            new FromBase64Transform(), CryptoStreamMode.Read);
      }

      // Read and write the data

      fromStream.Read(buffer, 0, buffer.Length);

      toStream.Write(buffer, 0, buffer.Length);   

   }

}

Figure 4‑2  Base64Convert.cs

In Figure 4‑2 only the source lines in red differ in the toBase64 or not toBase64 cases, even though the conversion to and from Base-64 encoded data are significantly different algorithms.  This is a good example of the instance-composeability of the Stream classes, and the object oriented nature of the Framework Class Library in general.
4.4. Practical Stream Programming

You may have noticed that when working with streams all of the code samples have shown only the reading and writing of Byte arrays.  It may come as a bit of a surprise to find out that Stream-derived classes only allow the reading and writing of bytes.  If you wish to read and write structured data such as primitive types other than Byte (for example, Int64, Decimal, String etc.) or if you wish to read and write streams of text, then you must communicate with your underlying Stream object through a reader or writer class.
The following chart shows the different Stream reader and writer classes defined by the FCL.
	Class
	Description

	System.IO.BinaryReader
	Used for the reading and writing of structured data.  The BinaryReader and BinaryWriter classes allow reading and writing of all of the primitive types.

	System.IO.BinaryWriter
	

	System.IO.StreamReader
	Used for reading and writing of text.  The StreamReader and StreamWriter classes make use of encoding classes that allow reading and writing of ASCII, Unicode, and a number of other character sets.

	System.IO.StreamWriter
	


Figure 4‑3  Stream Readers and Writers

The source code in Figure 1‑1 shows a very simple usage of the StreamReader class.  
Note: The StreamReader, like all of the reader and writer classes, can be used with any instance of a Stream-derived class.  However, if you construct a StreamReader or StreamWriter with a String parameter, the class assumes you want file access and creates a FileStream object for you automatically.

5. Collection Classes

Working with collections of objects is a common enough programming task that the FCL has provided a number of classes for maintaining collections.  Most class libraries include some common data structure implementations, and the .NET Framework is no exception.  Because many of the concepts of collections are consistent with existing environments, I will try to touch on the interesting points or details unique to the Framework Class Library.
5.1. Common Collection Classes

Most of the collection classes in the FCL exist in the System.Collections namespace.  The following chart shows the most commonly used collection classes in the library.
	Collection Class
	Description

	ArrayList
	Implements a collection of object references in an array that grows as needed.

	Hashtable
	Implements a collection of object references in a hash table.  Nodes are added and retrieved based on the hash-code of a key object.

	Queue
	Implements a FIFO collection of objects.

	SortedList
	Implements a collection of objects sorted by an associated key object.  Nodes are accessible by key or by index.

	Stack
	Implements a LIFO collection of objects.

	StringCollection
	Implements a type-specific collection of Strings objects.  Defined in the System.Collections.Specialized namespace.


Figure 5‑1  Common Collection Classes

Typically, you will create an instance of the appropriate collection class, and then use methods and properties on the instance to add, insert, reference and remove objects from the collection.
Most of the basic collection classes in the FCL collect Object references.  What this means is that you can manage instances of any type in a collection class.  However, there are some examples of type-specific collections such as  StringCollection and Control.ControlCollection.
5.2. Collection Class Interfaces

An interesting thing about the collection classes in the FCL is their consistent use of interfaces defined by the FCL.  This use of interfaces allows code to deal with the various collections in the FCL in a consistent manner.  In fact, if your code uses collections in terms of their interfaces, then you can change which collection class you use without having to change your code.  The following table shows the interfaces that are commonly implemented by collection classes.
	Collection Class
	Description

	IEnumerable
	Defines a method that returns an IEnumerator reference for enumerating over the objects in the collection.

	ICollection
	This basic interface defines two functions for synchronizing access to your collection, and one member that returns the count of objects in your collection.  Extends IEnumerable.

	IList
	Defines methods for adding and inserting items to a list, as well as methods for retrieving and removing elements.

	IDictionary
	Defines members for key/value pair access to a collection.

	IEnumerator
	Returned by the GetEnumerator() method of the IEnumerable interface, the IEnumerator defines a Current property, and a MoveNext() and Reset() methods.

	IDictionaryEnumerator
	Returned by the GetEnumerator() method of the IDictionary interface, this interface defines members for retrieving keys and values for each node in a collection.  Extends IEnumerator.


Figure 5‑2  Collection Class Interfaces

To demonstrate the value of this interface oriented approach to collection classes one need only look at the foreach statement in C#.  The foreach statement can be used to make a read-only enumeration over each node in a collection.  It doesn’t matter what type object is stored in the collection nor does it matter what type of collection you are using.  The foreach statement works just as long as the collection object implements the IEnumerator interface.  All of the collection classes (including the primitive System.Array class) implement IEnumerator.
using System;

using System.Collections;

 

class SomeType{

   public static void Main(){

      // Create a Queue with the days of the week in it

      Queue week = new Queue();

      DateTime day = DateTime.Now;

      TimeSpan daySpan = new TimeSpan(TimeSpan.TicksPerDay);

      for(Int32 index = 0; index < 7; index++){

         week.Enqueue(day);

         day = day + daySpan;

      }

      // Output the Queue

      Console.WriteLine("Outputing 'week' Queue:");

      Output(week);

 

      Console.WriteLine();

 

      // Create a String array with the some strings

      String[] strings = new String[]{"Inky", "Blink", "Pinky", "Sue"};

      Console.WriteLine("Outputing 'strings' String[]:");

      // Output the array

      Output(strings);

   }

 

   static void Output(IEnumerable enumerable){

      foreach(Object o in enumerable){

         Console.WriteLine(o);

      }

   }

}

Figure 5‑3  Foreach.cs

The code in Figure 5‑3 demonstrates the use of the collection interfaces by implementing a method named Output() (shown in red) that uses foreach to enumerate over a collection of objects and call ToString() on each object.  The two calls to Output() (also shown in red) are passing very different objects to the method.  One object is an instance of a Queue, which is a complex collection class.  The other object is a primitive array of String objects.  The foreach statement works consistently on both unrelated types because they both implement the IEnumerable interface.
5.3. Creating Your Own Collection Classes

Sometimes you will find it useful to create your own collection classes.  Most of the time you will create a custom collection class in terms of an existing class.  For example, if you have a custom type named MyType, and you wanted to maintain a sorted collection of MyType objects, you could create a class called MyType.Collection which is internally implemented using a SortedList object.
This is a common thing to do, when your large application uses a certain type routine in a collection.  The advantage of creating a custom type is that you have the opportunity to re-implement methods with type-specific parameters, rather than always dealing with Object references.
When creating your own custom collection classes, you should take care to implement the appropriate interfaces.  This will make your collection classes much more programmer-friendly, and will help your objects to blend with the object types in the Framework Class Library.

Note: Custom collection classes will be much rarer in a later version of the .NET Framework.  Eventually, the .NET Framework will include a feature called generics that are similar to templates in C++.  Generics will remove the need to create type-specific class wrappers of general collection classes.

6. Non-Instantiable Types

The next couple of sections just touch on a couple of types that are commonly useful, and related in one respect.  Each of the types in this section are non-instantiable types.  This means that you cannot create an instance of the type, and the type exists as a logical container for static members.  There are a number of non-instantiable types defined by the FCL.
Note: This design pattern is useful in creating your own reusable and application classes.  Sometimes you simply need a class of static functions that are related.  The methods may use data or objects, but may not have use of instance or state data in the typical sense.  In these cases you can create a non-instantiateable class.  To create a class that cannot be instantiated, define a single default constructor for the type, and make it private.

6.1. System.Math

The Math type defined by the FCL includes a number of methods for doing simple and complex mathematical calculations.  Most of the members of the Math class are methods such as Sqrt() and Cos(), but Math does define two constant fields, one each for the approximations of the natural logarithm E and PI.
6.2.  System.Convert

The Convert class defines methods like ToInt32() and ToBoolean(), that make efficient conversions from one primitive type to another.   Each of the methods implemented by Convert has a number of overloads for the source data type.
Note: Depending on your choice of programming language, some data conversions between primitive types are supported directly by the compiler.  For example, you can assign an instance of an Int16 to an Int32 with C#, and the compiler will make an implicit conversion.  Compiler conversions are higher-performance code than method calls made to the Convert class.

6.3. System.Console

I have been using the Console type throughout this tutorial, and now I am going to mention it explicitly.  The Console type contains static methods for reading and writing to the command line.  You can also use the Console type to obtain a reference to a Stream derived object representing the standard input, standard output, and standard error streams.
7. Application Scenarios and the FCL

The .NET Framework supports a number of application development scenarios.  Three of the noteworthy scenarios are as follows.
·  Windows forms applications.  GUI applications running locally. 

· Web forms applications.  Web-based applications running on a server, whose user interface is the common web browser.

· XML Web services applications.  Web-based applications or objects, running on a server, that have no user interface and are consumed by other software (such as Windows forms, web forms, or other XML Web services).

Most of the Framework Class Library is general purpose.  That is to say that most types in the FCL can be and are used in any kind of managed application.  However, there are classes in the FCL specifically written to support the development of applications targeting the preceding three scenarios.  The following table points you to namespaces in the FCL that contain classes for writing the various types of applications.
	Application Scenario
	FCL Namespaces

	Windows forms applications
	System.Windows.Forms

System.Drawing

	Web forms applications
	System.Web

System.Web.UI

	XML web services
	System.Web

System.Web.Services

System.Xml


Figure 7‑1  Application Scenario -> Namespace

A book could be written on the classes supporting each of these scenarios alone.  Look for tutorials later in this series for comprehensive coverage on each of these application types.
8. The Framework Class Library

The information in this tutorial should really help to jumpstart your introduction to managed coding.  By now, you have seen a variety of classes defined by the FCL, and you have had a chance to become familiar with the documentation that comes with the product.  Enjoy programming with the .NET Framework!
