Description: This document is a tutorial in a series of tutorials for programmers learning about the .NET Framework development environment. What you will learn is how to write GUI applications with the .NET Framework using the Framework Class Library. This includes coverage of the Windows Forms classes and the Drawing classes. The skills from this tutorial will help the C# or VB.NET programmer to take full advantage of the platform.

Requirements: You should be familiar with at least one programming language, such as C++, Pascal, PERL, Java or Visual Basic. You should have some comfort with object oriented concepts such as instantiating and using objects. You should be familiar with the different components of the .NET Framework. (If you are not, please read the tutorial titled Introducing the .NET Framework). You should be comfortable with general computer science concepts. To do the exercises and run the examples you need a PC running Windows with the .NET Framework installed.

Table of Contents

Table of Contents
1
Figures and Exercises
2
1.
Writing GUI Applications with the .NET Framework
3
1.1.
A Simple GUI Application
3
1.2.
A Typical GUI Application
4
1.3.
The Tools of the Trade
6
2.
The Windows Forms Library Architecture
7
2.1.
Event Driven Objects
7
2.2.
The Control Class
8
2.3.
The Form Class
10
3.
Practical GUI Programming
10
3.1.
Working with Controls
11
3.2.
Working with Menus
13
3.3.
Art and Drawing
15
3.4.
Dialog Boxes
17
4.
GUI Application Scenarios
17
4.1.
SDI GUI Application
17
4.2.
MDI GUI Application
17
4.3.
Web-Deployed GUI Application
19
5.
Windows Forms
20
Figures and Exercises

Figure 1‑1 SimpleGUI.cs
3
Figure 1‑2 SimpleGUI.exe
4
Figure 1‑3 TypicalGUI.cs
5
Figure 3‑1 CrazyControls.cs
12
Figure 3‑2 Menus.cs
14
Figure 3‑3 Graphics.cs
16
Figure 4‑1 MDIView.cs
18
Exercise 1‑1 Create a GUI Application
7
Exercise 1‑2 Create a GUI Application with More Controls
7
Exercise 3‑1 Create a GUI Application with Menus
14
Exercise 3‑2 Add Menus and Handlers to a GUI Application with Menus
15
Exercise 3‑3 Create a GUI Application that Overrides OnPaint()
16
Exercise 4‑1 Create an MDI Application
19

1. Writing GUI Applications with the .NET Framework

Writing applications that present a Graphical User Interface (GUI) with the .NET Framework can be very rewarding. Part of the reason for this is that the .NET Framework Class Library (FCL) includes a wealth of reusable types that make GUI programming consistent and logical. This sub-collection of types is commonly referred to as the Windows.Forms classes.
This tutorial focuses on the use of the classes found in the System.Windows.Forms namespace in the FCL. These are the classes that you will use if you are writing client-side GUI applications with the .NET Framework. (The reason to distinguish this as a client-side technology is because of the Web-Forms classes which generate GUI web-sites, but are executed on the server side).
With the forms classes, it is best to just jump into some examples, before discussing architecture. This is partially because it is so easy to work with these components.
1.1. A Simple GUI Application

The following figure shows the absolute simplest possible GUI application that you can write using C# and the .NET Framework.
using System.Windows.Forms;

class App{

 public static void Main(){

 Application.Run(new Form());

 }

}

Figure 1‑1 SimpleGUI.cs

This application does very little, but it does create a window on the screen, which will wait for the user to close it before the application terminates. Probably the most important code in fig 1-1 is the code shown in red. This shows the creation of an instance of the System.Windows.Forms.Form type.
Normally speaking, you will derive a class from Form to create a specialization the fits the need of your application, but if you run the code in fig 1-1, you can get a feel for the degree of functionality provided by the Form base class (and its bases, which we will talk about shortly). fig 1-1 shows what you will see if you run the SimpleGUI.exe application.
[image: image1.png]Restore
Move
ES
Miginize

Maiize

X Close

Alt+Fe

Figure 1‑2 SimpleGUI.exe

The default functionality of the Form class creates a simple window with a single menu that supports basic manipulation of the window, such as moving and resizing. In addition, it includes a Close menu option that will terminate the application.
1.2. A Typical GUI Application

In typical applications you will, of course, add functionality to your window. The following code shows another very simple sample, but this one is much more typical, because it does two things.
· It extends the functionality of Form, by adding a button to the window.

· It adjusts the default functionality of form to suit its needs.

using System;

using System.Windows.Forms;

class App{

 public static void Main(){

 Application.Run(new SomeForm());

 }

}

class SomeForm:Form{

 public SomeForm(){

 Button button = new Button();

 button.Text = "My Button";

 button.Click += new EventHandler(OnClick);

 this.Controls.Add(button);

 this.FormBorderStyle = FormBorderStyle.Fixed3D;

 }

 void OnClick(Object sender, EventArgs args){

 MessageBox.Show("The Button Was Clicked!");

 }

}

Figure 1‑3 TypicalGUI.cs

The application shown in fig 1-3 is still fairly simple, but it begins to show the infrastructure of typical GUI applications written with the .NET Framework.
Here are some points worth noting. In the entry point of this application, I create an instance of SomeForm, which is a custom class derived from Form.

 I pass this new instance to the static Run() method of the Application class. This method starts a message pump on the current thread of execution. Message pumps are necessary for windows to appear, and respond to system events. (More on this shortly). In fig 1-3 the Application.Run() method does not return until the window has been closed by the user.

· In the constructor method of SomeForm, the instance sets up its initial state. This includes setting properties (defined by the base class) on its instance, as well as creating a button control for the form. Constructors often include setup code that helps to define the functionality of the Form-derived class.

· The code shown in red has to do with the creation and manipulation of an instance of the System.Windows.Forms.Button class. Here are the operations performed.

· The Button object is created and assigned to the button reference variable.

· The Text property of the Button is accessed to set the text of the button on the screen.

· A handler method for the Click event of the button is added to the instance, so that when a user presses the button, the OnClick method of the SomeForm class is called. (I could name this method anything I want. I often start event-handler methods with the word ‘On’).

· The code shown in green is where the SomeForm accesses properties of its base class to affect its functionality. First, it uses the Controls property to add the button to the window. Second, it uses the FormBorderStyle property to indicate to the base class that this instance should not have a resizable window.

· After the constructor has executed, the system waits for user events. Most of the possible user events are ignored by the SomeForm class however, because it registered for the Click event on the Button, if the user presses the button the OnClick method will be called.

· When the OnClick() method is called, the code in fig 1-3, calls the static Show() method of the MessageBox class to display a simple message box to the user.

1.3. The Tools of the Trade

When writing GUI applications using the .NET Framework, you will use the classes in the System.Windows.Forms namespace, commonly referred to as Windows Forms classes. You will also most likely find use for the graphics classes found in the System.Drawing namespace.
Another tool of the trade is the Visual Studio.NET development environment. It includes GUI designers that can drastically ease the task of creating GUI applications. It provides you with a GUI tool that you can use to create Form-derived classes with controls that you drag-and-drop onto the form where you want them.
The great thing about the .NET Framework is that everything you do with Windows Forms, you do through code (rather than hidden resource files, and other arcane constructs). The great thing about the Visual Studio.NET forms designer is that it parses and writes C# or VB.NET code for you so that you can create GUI code more quickly, and then if necessary tweak the code to meet your needs.
Note: In this tutorial, I will be telling you how to write Windows Forms code, without focusing too heavily on Visual Studio.NET. But the things you learn here will certainly help you when you use Visual Studio.NET to develop your GUI code.

Exercise 1‑1 Create a GUI Application

1. The source code in fig 1-3 implements a typical (but simple) GUI application.
2. Copy this source code to a file named TypicalGUI.cs and compile it with the C# compiler.
3. Test the resulting executable.
Exercise 1‑2 Create a GUI Application with More Controls

1. Starting with the source code from the previous exercise, try adding a second control to the SomeForm class. (Perhaps a TextBox control).
2. Set the Location property of the new control to set where it is on the form.
3. Build and test the resulting executable.
4. Extra Credit: Respond to some event produced by the new control. Use the event handling code for the button as a template for your new code.
2. The Windows Forms Library Architecture

In this section we will look at the various pieces that make up the Windows Forms library of reusable types. This look at the architecture will help when you begin to use the objects in your code.
2.1. Event Driven Objects

GUI applications are Event Driven. What this means is that GUI code, such as the code found in fig 1-3, spends most of its lifetime patiently waiting for the user to do something with the application.
If the user does nothing, this is exactly what the application does; nothing. If the user presses buttons and moves the mouse, and selects menus, then the application has the choice of responding to all of these events in one of two ways.
· Execute some code in response to the event.

· Ignore the event, and allow the default response to the event to happen.

Rich GUI programming environments like the .NET Framework (and Windows) provide so many events that your application will typical ignore a large majority of them
I want to address a couple of points that I mentioned earlier. I said that the Application.Run() method is a message pump, and I said that event driven applications spend most of their lives patiently waiting. The message pump of a GUI application is where your code waits for events.
Events originate from a user, an operating system parses the user’s input, and then creates a message. The message is then sent to the appropriate application where the application’s message pump gets the message and responds to it.
In an object oriented environment like the .NET Framework, you often don’t think of events as messages, but it can be helpful to be aware of the nature of a message pump, simply so that you are aware of the flow of logic through your application. In windows forms applications you will typically initiate a message pump using the Application.Run() method, and that method will normally return when your application is shutting down.
Note: Knowing how events are handled can help you to deal with advanced features such as concurrency. For example, you may want to respond to user events, and process something in the background. To do so with the windows forms classes, you could create two threads. One thread would spend most of its life in the Application.Run() method, while the other could do the background processing. Another way to implement concurrency (with a single thread), is to create timer events that fire at regular intervals. And yet a third option is to ask the message pump to fire an event when there are no events to be processed.

2.2. The Control Class

The Control class is the most important class in the System.Windows.Forms namespace. The reason for this is that the Control class encapsulates or wraps the functionality of a window in the underlying operating system. What this means is that all window-based GUI elements are represented as Control-derived types in the Windows Forms classes. This also means that any functionality that is common amongst all windows in a system is implemented or represented in the Control class.
The importance of the Control class is often overlooked because of the fact that windows in the .NET Framework are called Forms and the Form class gets a lot of attention. However, the Form class itself is ultimately derived from Control and inherits much of its functionality from its base classes.
Now that you know that Control is the parent of all (well, most) of the GUI elements in the class library, you know where to start looking for design guidelines for the entire library. Let’s start with event handling.
The Control class defines a virtual method called WndProc(). This method is rarely touched by the code that you and I will write, but it is the birth-place of all events in the system.
The OS must communicate events to our code somehow, and remember that it does so with messages. The WndProc() method receives these messages (almost) directly from the OS. But the default implementation of WndProc() in the Control class is not an empty one, but rather it does a lot of work.
The WndProc() method parses these messages from the OS, and then calls virtual methods (defined by Control) to handle the messages. Here is an example. The Windows operating system defines a message called WM_MOUSEMOVE which is sent to a window whenever a mouse moves over it. The WndProc() receives this message, parses the information in it, and then passes the resulting information to the OnMouseMove() virtual method. This is where our code comes in to play.
Note: The specifics of the underlying OS mentioned in the previous paragraph may change from one implementation of the .NET Framework to another. This is one of the advantages of abstracting the OS with a class library like the Windows Forms classes.

If we write a class derived from Control or a class derived from Form (which is derived from Control), then we can respond to the mouse moving over our class’ window by overriding the OnMouseMove() virtual method. This is how our specialized implementations respond to messages. However, the event handling story is not yet finished.
Specific controls decide which events they wish to expose to the outside world. For example, the Button class exposes a Click event (amongst others) that can be consumed by any code that uses a Button instance. (For an example of this see the code in fig 1-3). Using the Click event as an example, the Button class knows that it may just be time to fire the Click event when the OnMouseUp() method is called indicating that a mouse button just moved from the pressed state to the un-pressed state over the control’s window. It is through the Button class’ specific override of OnMouseUp() that an OS message becomes the Click event.
This can be very important information to have, and here are some reasons why.

 Now you know that if you derive a type from Button, and override its OnMouseUp() method, then you should make sure that your override calls the base implementation or else the Click event will never be fired. The general rule is that if you override any virtual method in a Control-derived class, you should call the base implementation either before or after the operations of your implementation.

 When you create your own Control or Form-derived types, you can define events that your type fires (for the consumption by the code using your type). You should use the same design pattern, and fire your events from an On*() virtual method.

 Finally, if the OS sends a message to your control, for which there is no matching On*() method to override, then you should override the virtual WndProc() method as well as define a matching virtual On*() method for the message. When the message arrives, parse the contents, and call your virtual method. Then, in your virtual method you can respond to the message, and/or fire events. (This is what all of the Control-derived types in the class library do for messages that are important to their class of window.) Note: If you override WndProc(), you must call the base implementation, or your application will throw an exception.

This is the foundation on top of which all of the Control-derived classes are built in the class library. Understanding the information in this section will have an enormous effect on your success in working with these objects.
2.3. The Form Class

Now that you have seen how important the Control class is, you may be wondering what the Form class brings to the table. And this is a fair question, because in fact, it implements very little additional functionality of its own. However, the Form class is very important, not because of the amount of code that it implements, but because of its role in the Windows Forms classes. In short, all top-level windows are implemented as Form derived classes.
In fact, as a general rule, you will find that you write code that derives from Form, and then you use classes that derive from Control (but not from Form) without designing specialized derivations. Although it is possible (and sometimes desirable) to make your own specializations of controls like buttons and text boxes, it is most common to specialize Form.
3. Practical GUI Programming

Believe it or not, you have now been exposed to more infrastructure than most Windows Forms programmers ever know. This is good, but can also be a bit daunting, so now it is time to switch gears and begin talking about the practical application of the classes in the System.Windows.Forms and System.Drawing namespaces.
You will begin to see how simple it is to write GUI code quickly, and the knowledge you have of the architecture of these classes will help you to specialize your code when you have needs that do not fit into the default implementation of a class.
3.1. Working with Controls

Most of your forms applications will instantiate and use child controls. These are the many buttons, list boxes, text boxes, etc. that you find on dialog boxes and windows in GUI operating systems.
I won’t list all of the types of controls implemented by the FCL in this text, but instead I will show you the typical usage pattern for controls. But be aware that almost every conceivable control is implemented by the FCL ranging from simple controls like buttons and list boxes, to complex controls like calendars, data-grids, and toolbars.
So here are the steps you take to work with controls on your form.

 In the constructor of your Form-derived type, instantiate an instance for each control that you want on your form.

 Set properties on the control to define their size, shape, color, location, and general behavior.

 Use the Add() method of the Controls property of your Form-derived type to add the controls you created to your window.

 At this point, you will typically compile and test the layout of your window, and then begin incrementally adding functionality to your Form-derived type.

· To add functionality, define methods (usually private) in your Form-derived type to handle the important events from the controls in your form.

· Then, in your Form-derived type’s constructor add code to register your method with the relevant event on the control. Again, for an example of this, see the code in fig 1-3.

You should also be aware that most of the properties on a control can be modified at any time. This means that you can, for example, set the initial text in a TextBox instance (using the Text property of the control). You would typically put this code in your Form’s constructor, but then later, perhaps in response to another event, you can get or set the value in the Text property to adjust the control on the fly.
This principal concept can be applied to just about any aspect of a control, including its size, shape, color, visible or hidden status, etc. The following code is a somewhat pathological case of control creation and on-the-fly manipulation.
using System;

using System.Drawing;

using System.Windows.Forms;

class App{

 public static void Main(){

 Application.Run(new CrazyForm());

 }

}

class CrazyForm:Form{

 private Button swap;

 private TextBox text;

 private ComboBox combo;

 public CrazyForm(){

 // Create a ComboBox & set properties & register handlers

 combo = new ComboBox();

 // Populate the combo from the KnownColor enumerated type
 String[] colors = Enum.GetNames(typeof(KnownColor));

 combo.Items.AddRange(colors);

 combo.Location = new Point(140, 10);

 combo.DropDownStyle = ComboBoxStyle.DropDownList;

 combo.SelectedIndexChanged += new EventHandler(OnComboChange);

 // Create a Button & set properties & register handlers

 swap = new Button();

 swap.Text = "Swap";

 swap.Location = new Point(160, 130);

 swap.Size = new Size(60, 60);

 swap.Click += new EventHandler(OnSwap);

 // Create a TextBox & set properties & register handlers

 text = new TextBox();

 text.Size = new Size(100, 100);

 text.Location = new Point(10, 40);

 text.Multiline = true;

 text.Text = "Select from the ComboBox!";

 // Add the controls to the Form and Set some properties

 this.Controls.AddRange(new Control[]{combo, swap, text});

 this.Text = "Crazy Controls!";

 this.FormBorderStyle = FormBorderStyle.FixedDialog;

 }

 void OnSwap(Object sender, EventArgs args){

 Point temp = combo.Location;

 combo.Location = swap.Location;

 swap.Location = text.Location;

 text.Location = temp;

 }

 private void OnComboChange(Object sender, EventArgs e){

 ComboBox combo = sender as ComboBox;

 KnownColor known = (KnownColor)Enum.Parse(

 typeof(KnownColor), combo.Text, false);

 Color c = Color.FromKnownColor(known);

 text.BackColor = c;

 c = Color.FromArgb(255-c.A, 255-c.R, 255-c.G, 255-c.B);

 text.ForeColor = c;

 }

}

Figure 3‑1 CrazyControls.cs

3.2. Working with Menus

Menus are an important part of almost any good UI. The Windows Forms classes make menus easy to design in a very flexible manner. The following list describes the menu class architecture.
· MainMenu – Used as the main menu for a Form. This is the menu that you use along the top of a window.

· ContextMenu – Used as to create a menu temporarily, when a user right-clicks on a control or form.

· MenuItem – Used to indicate a single menu item. This can be a selectable item from the list, or it can be an item that brings up a sub-menu. You register event handlers with specific instances of MenuItem much like you would with an instance of a control such as Button.

· Menu – Base class for MainMenu, ContextMenu, and MenuItem. The most important member of this class is the MenuItems property which exposes a collection of MenuItem objects. You use this property for instances of each of the above types to add sub-items to the menu.

Note: The Menu class is not derived from Control, but rather it is derived from Component which is the base class of Control. This makes menus one of the few GUI elements that are not Control-derived classes.

The following code shows a typical use of menus.
using System;

using System.Drawing;

using System.Windows.Forms;

class App{

 public static void Main(){

 Application.Run(new MenuForm());

 }

}

class MenuForm:Form{

 public MenuForm(){

 this.ContextMenu = new ContextMenu(SetupMenu());

 this.Menu = new MainMenu(SetupMenu());

 }

 MenuItem[] SetupMenu(){

 MenuItem file = new MenuItem("&File");

 file.MenuItems.Add("Exit", new EventHandler(OnExit));

 MenuItem messages = new MenuItem("&Message Boxes");

 EventHandler handler = new EventHandler(OnMessageBox);

 messages.MenuItems.Add("Message Box 1", handler);

 messages.MenuItems.Add("Message Box 2", handler);

 return new MenuItem[]{file, messages};

 }

 void OnExit(Object sender, EventArgs args){

 this.Close();

 }

 void OnMessageBox(Object sender, EventArgs args){

 MenuItem item = sender as MenuItem;

 MessageBox.Show(this, "You selected menu item - "+item.Text);

 }

}

Figure 3‑2 Menus.cs

The source code in fig 3-2 shows a common example of menu reuse, by building the same basic menu twice, once for the main menu of the form, and once for the context menu of the form.
Note: The OnMessageBox() handler method in fig 3-2 casts the sender parameter to a MenuItem reference. The sender parameter is a reference to the object that fired the event. You can take advantage of this information in a number of creative ways. For example, it is common to make a specialized derivation of the MenuItem class, to store some state information. Then use the handler method to cast the sender back to the MenuItem-derived type, and retrieve the state information.

Exercise 3‑1 Create a GUI Application with Menus

1. The source code in fig 3-2 shows a typical GUI application with menus.
2. Copy this source code to a file named Menus.cs and compile it with the C# compiler.
3. Test the resulting executable.
Exercise 3‑2 Add Menus and Handlers to a GUI Application with Menus

1. Starting with the code from the last exercise, add an additional menu.
2. Create a new MenuItem instance, and add sub-menu items. Include the new MenuItem instance in the line of code that returns a new array of menu items.
3. Extra Credit: Add handlers for your new menu items.
4. Test the resulting executable.
==
3.3. Art and Drawing

Many GUI applications get all of their functionality from control classes. However, from time to time it is necessary to draw on your Form derived type, or it can also be common to create your own custom controls that need the ability to draw.
The System.Drawing namespace includes types for doing drawing related tasks. This includes the classes Bitmap, Brush, Font and Pen, as well as the structures Rectangle and Point. But the most important class in the System.Drawing namespace is the Graphics class.
The Graphics class encapsulates a virtual surface on which you can draw. The virtual surface may be associated with a physical surface (such as the screen space allotted to a window), or an instance of the Graphics class may be entirely virtual for drawing to memory or some image format.
The most common use of the Graphics class is when overriding the OnPaint() virtual method of the Control class. This method includes a parameter of type PaintEventArgs. This method is called by the system when your Control-derived type needs to redraw itself, and the PaintEventArgs object passed to the method includes a property named Graphics which returns an instance of a Graphics object for your control. You can use this instance to draw on your window.
using System;

using System.Drawing;

using System.Windows.Forms;

class App{

 public static void Main(){

 Application.Run(new GraphicsForm());

 }

}

class GraphicsForm:Form{

 Int32 iterations;

 Pen[] pens;

 public GraphicsForm(){

 // Set the number of beziers

 iterations = 200;

 // Create an array of colorful pens

 pens = new Pen[iterations];

 Int32 delta = 255/iterations;

 for(Int32 index=0; index<iterations; index++){

 pens[index] = new Pen(Color.FromArgb(

 index*delta, 255-index*delta, 255-index*delta), 3);

 }

 // Set some window properties

 this.ResizeRedraw = true;

 this.BackColor = Color.White;

 }

 protected override void OnPaint(PaintEventArgs args){

 base.OnPaint(args);

 // Setup some points for our beziers

 Single x0, x1, x2, x3;

 Single y0, y1, y2, y3;

 x0 = y0 = y1 = x2 = 0;

 x1 = x3 = this.ClientRectangle.Width;

 y2 = y3 = this.ClientRectangle.Height;

 // Setup the distance between beziers

 Single deltaX = ((Single)this.ClientRectangle.Width)/iterations;

 Single deltaY = ((Single)this.ClientRectangle.Height)/iterations;

 // Draw our beziers using the Graphics property on args

 for(Int32 index=0; index<iterations; index++){

 args.Graphics.DrawBezier(pens[index],

 x0, y0, x1, y1, x2, y2, x3, y3);

 args.Graphics.DrawBezier(pens[index],

 x0, y0, x2, y2, x1, y1, x3, y3);

 x0+=deltaX; x3-=deltaX;

 y1+=deltaY; y2-=deltaY;

 }

 }

}

Figure 3‑3 Graphics.cs

The code shown in 3-3 really doesn’t do much. It just overrides the OnPaint() method of the Form class, to draw some Bezier curves. The relevant lines of code are shown in red. These lines use the Graphics object passed as a property of the args parameter, to draw the Bezier curves onto the window.
Exercise 3‑3 Create a GUI Application that Overrides OnPaint()

1. The source code in Error! Reference source not found. shows a GUI that draws itself by overriding OnPaint().
2. Copy this source code to a file named Graphics.cs and compile it with the C# compiler.
3. Test the resulting executable.
4. Try adding your own Drawing method calls in the OnPaint() method.
3.4. Dialog Boxes

If you want to create a dialog box using Windows Forms it is as easy as creating any other form. Simply derive your type from Form, and instead of calling the Show() method, or passing it to Application.Run(), call the ShowDialog() method on your instance.
The ShowDialog() instance method causes your Form-derived type to be displayed in a modal manner. Modal dialog boxes force the user to address the contents of the dialog and dispense with it before any other windows on the same thread of execution can be used by the user.
4. GUI Application Scenarios

There are three common application types where the Windows Forms are used. These are the Single-Document-Interface, the Multiple-Document-Interface (MDI), and the Web-Deployed application types.
These applications are distinguished together, because the contain GUI elements, and the code is executed on the local machine (as opposed to Web Forms applications which are GUI web-site implementations that execute on the server-side).
4.1. SDI GUI Application

All of the sample code up to this point in this tutorial qualifies as SDI GUI applications. These are simple applications that do not particularly follow a document oriented design (or if they are document-oriented the work only with a single document at a time). Common examples of SDI GUI applications are data entry applications, utilities, email readers and web-browsers.
4.2. MDI GUI Application

Multiple Document Interface or MDI applications are typically document oriented, and can often work with many documents at one time (sometimes even different document types are supported). Examples of MDI applications include word processors, spreadsheets, graphics applications, and other editors, such as Visual Studio .NET.
The Windows Forms classes have strong support for MDI applications, and the following code sample shows a complete (albeit simple) MDI graphics viewer application.
using System;

using System.Drawing;

using System.Windows.Forms;

class App{

 public static void Main(){

 Application.Run(new ViewForm());

 }

}

class ViewForm:Form{

 public ViewForm(){

 MenuItem file = new MenuItem("&File");

 file.MenuItems.Add("Open", new EventHandler(OnOpen));

 file.MenuItems.Add("-");

 file.MenuItems.Add("Exit", new EventHandler(OnExit));

 this.Menu = new MainMenu(new MenuItem[]{file});

 this.Text = "MDI Image Viewer";

 this.IsMdiContainer = true;

 }

 void OnOpen(Object sender, EventArgs args){

 OpenFileDialog ofd = new OpenFileDialog();

 ofd.Filter = "Image Files (JPEG, GIF, BMP, etc.)|" +

 "*.jpg;*.jpeg;*.gif;*.bmp;*.tif;*.tiff;*.png|" +

 "All files (*.*)|*.*";

 if (ofd.ShowDialog() == DialogResult.OK) {

 String fileName = ofd.FileName;

 if (fileName.Length != 0) {

 try {

 Form bitmap = new BitmapForm(fileName, this);

 }catch(ArgumentException e) {

 MessageBox.Show(String.Format(

 "{0} is not a valid image file", fileName));

 }

 }

 }

 }

 void OnExit(Object sender, EventArgs args){

 this.Close();

 }

}

class BitmapForm:Form{

 Bitmap bitmap;

 public BitmapForm(String filename, Form parent){

 bitmap = new Bitmap(filename);

 if(parent != null){

 this.MdiParent = parent;

 }

 this.ResizeRedraw = true;

 this.Text = filename;

 this.Show();

 }

 protected override void OnPaint(PaintEventArgs args){

 base.OnPaint(args);

 args.Graphics.DrawImage(bitmap, this.ClientRectangle);

 }

}

Figure 4‑1 MDIView.cs

The code in fig 4-1 implements an MDI graphics viewer program (in only 62 lines of code, I might add). The MDI related code is shown in red. But take the time to check out the rest of the code in the sample. It shows more usages of menus and the System.Drawing.Graphics class.
Exercise 4‑1 Create an MDI Application

1. The source code fig 4-1 shows an MDI application.
2. Copy this source code to a file named MDIView.cs and compile it with the C# compiler.
3. Test the resulting executable.
4.3. Web-Deployed GUI Application

Web-deployed GUI applications can be complex to create, but are also some of the most useful GUI applications that the Windows Forms library supports. Web-deployed forms applications are built around Control-derived objects that are embedded in web-pages (much like applets or ActiveX controls).
Any control that you derive from System.Windows.Forms.Control can be embedded in a web page.
Note: If you are using forms controls in web pages, it is necessary that the .NET Framework is installed on the client machine. This is because the managed code is downloaded to the client machine, and executed locally. If you use the Web-forms classes to create web sites, the managed code is executed on the server-side, and the client does not need to have the .NET Framework installed.

The web-deployed forms application is likely to become most useful for applications that are used on the Intranet of an enterprise. This is because internal network bandwidth tends to be higher and more reliable; meanwhile, the web-deployed or browser-deployed forms application can have the best of both worlds: simple deployment and rich features.
To embed a Windows Forms Control-derived class in a web page, you use the <object> tag.
<OBJECT id="ctrl1" classid="http:BrowserControls.dll#SomeControl" >
</OBJECT>

The portion shown in red is the location of the managed assembly file that contains the control to be embedded, and the code shown in green indicates the name of the Control-derived class in the assembly.
The code that comes with this tutorial includes a sample called BrowserControl.cs that implements a browser-embedded suite of controls.
Note: To use web-deployed forms applications, it is necessary that the .html page be served by a web server, and the client be Internet Explorer. It is not sufficient to open the HTML page in IE directly. If you want to try the BrowserControl.cs sample, you should build it and then copy the resulting .DLL along with the BrowserControl.html file into your \InetPub\WWWRoot directory.

5. 5. Windows Forms

Writing GUI application with the .NET Framework can be a rewarding experience. The Windows Forms classes are filled with features to make your applications rich and enjoyable to use. Have fun with the .NET Framework!
