OOP

[image: image1.jpg]pER| 4p
ARDU ALTA

[image: image2.png]UNIVERSITYOF
BIRMINGHAM

Object Oriented Programming Using C#

Introduction to C#

Dr M. Spann

1. Aims and Objectives

This is an introductory (and non-assessed!) lab, which is aimed at creating a simple C# class called Rational, which enables a rational number to be stored and manipulated. You will create your own C# class which will be stored in a dll and a test program which uses this class.
2. Introduction

A rational number
[image: image3.wmf]r

 is a number stored as a ratio of two integers :

[image: image4.wmf]d

n

r

/

=

where
[image: image5.wmf]n

 and
[image: image6.wmf]d

 are integers representing the numerator and denominator respectively. Obviously the advantage of rational numbers is that floating point numbers can be stored and manipulated using efficient integer operations. Their disadvantage is their finite precision – some floating point numbers (PI and
[image: image7.wmf]2

 being two well-known examples) cannot be represented as rational numbers.

We want to store all rational numbers in reduced form. In other words, after factoring out common factors of the numerator and denominator so that, for example, 8/12 would be represented as 2/3 in reduced form. Note that rational numbers greater than 1 are allowed. There is no need to extract the integer part of the rational number.

3. Lab Work
Create a C# class Rational which is able to represent a rational number as the ratio of two integers. Provide the following functionality:

· A constructor which takes the numerator and denominator as arguments and creates a rational number in reduced form

· Functions for add, subtract, multiply, divide. Note that all of these operations are closed operations with respect to the set of rational numbers. For example, adding 2 rational numbers produces a rational number

· Boolean functions which test for equality, greater than and less than
Note that C#, like C++, supports operator overloading and you are free to use it if you wish although you will need to consult the text books or online help as we didn’t cover it in the lectures.
Create a DLL containing your class and, in a separate project, write a program which demonstrates the full functionality of your class.

As an extension piece of work for more advanced students, implement a constructor Rational(double d, int prec) which creates a rational number from a specified double precision number d and represents it to within a given precision represented by prec. Demonstrate this working by trying to represent PI as a rational number to a given precision where the precision is defined as the number of decimal places to which the PI approximation is accurate. I’m sure at school you were all familiar with the approximation to PI of 22/7. This is accurate to the 2nd decimal place only. In other words it equals 3.14285…. where only the first two decimal places are correct. See if your program comes up with the much better approximation of 355/113, which is accurate to the 6th decimal place or the even better approximation of 102928/32763, which is accurate to the 8th decimal place!

PAGE
2

_1128844816.unknown

_1128844858.unknown

_1128844960.unknown

_1128844848.unknown

_1128844790.unknown

