Description: This document is a tutorial in a series of tutorials for programmers learning about the .NET Framework development environment. This tutorial covers web application programming with the .NET Framework.

Requirements: You should be familiar with at least one programming language, such as C++, Pascal, PERL, Java or Visual Basic. This tutorial assumes familiarity with Windows Forms programming and the .NET Framework in general. Introductory tutorials on both of these topics have already been release in this tutorial series. To do the exercises and run the examples you need a PC running Windows 2000 Server with Internet Information Services and the .NET Framework installed.

© 2001 Microsoft Corporation. All rights reserved. Reproductions with permission from Microsoft Corporation.
Table of Contents

Table of Contents
1
Figures and Exercises
2
1.
Programming Web Applications with Web Forms
3
1.1.
Programming Web Applications
3
1.2.
CGI, ISAPI DLLs and Scripts
4
1.3.
Putting ASP.Net into Perspective
5
2.
Introducing Web Form Programming
7
2.1.
How ASP.Net Works
9
2.2.
Web Controls
11
2.3.
Event Wire-up and Overriding Virtual Methods
16
3.
Writing Web Applications
17
3.1.
Building and Deploying Web Applications
17
3.2.
Using Visual Studio .NET
18
3.3.
Application Architecture
18
Figures and Exercises

Figure 1‑1 SimpleSite.html
3
Figure 1‑2 ASP.Net in Context
6
Figure 2‑1 Web form application part 1 -- SimpleWebForm.aspx
7
Figure 2‑2 Web form application part 2 -- SimpleWebForm.cs
8
Figure 2‑3 WebControls.aspx
12
Figure 2‑4 WebControls.cs
13
Figure 2‑5 http://*/WebControls.aspx
14
Figure 2‑6 Web Controls
15
Exercise 2‑1 Deploy SimpleWebForms.aspx/ SimpleWebForms.cs
9
Exercise 2‑2 Make Modifications to SimpleWebForms.aspx/ SimpleWebForms.cs
9
Exercise 2‑3 Deploy WebControls.aspx/WebControls.cs
15
Exercise 2‑4 Viewing Source of Deploy WebControls.aspx
16
Exercise 2‑5 Modifying WebControls.aspx
16

1. Programming Web Applications with Web Forms

This tutorial is the second to the last tutorial in this series. If you have been following the series then you are now familiar with the .NET Frameworks, the Common Language Runtime (CLR), the Framework Class Library (FCL), C# and many other .NET related topics. It is now time to discuss one of the most exciting features of the .NET Framework: Web Form programming using ASP.NET.

Web forms are the .NET Framework term for applications that execute on the server side, and use HTML as their user interface to the world. Web forms are a way of producing active and dynamic web sites.

1.1. Programming Web Applications

Creating a web site is easy. A web site requires that you have a web server that listens for HTTP requests (usually initiated by a browser) and a collection of HTML files to render the site. For example, if you ran the Supermegacineplexadrome movie theater, you could publish your movie times as a web site with an HTML file something like this.

<html>

<body background="Texture.bmp">

 <TITLE>Supermegacineplexadrome!</TITLE>

 <H1 align="center">

 Welcome to Supermegacineplexadrome!

 </H1>

 <P align="left">

 <U>Showtimes for Wed 10/31</U>

 </P>

 <P>The Glass Ghost (R) 1:05 pm, 3:25 pm, 7:00 pm, 8:55 pm</P>

 <P>Untamed Harmony (PG-13) 12:50 pm, 3:25 pm, 6:55 pm</P>

 <P>Forever Nowhere (PG) 3:30 pm, 8:35 pm</P>

 <P>Without Justice (R) 12:45 pm, 6:45 pm</P>

</body>

</html>

Figure 1‑1 SimpleSite.html

The problem with .HTML files is that they are intrinsically static. The HTML in Figure 1‑1 shown in red represents parts of the overall file that may change from day to day, and should be generated dynamically. Static data has many problems, not the least of which is that it is boring! After all, automation is really what computers are about anyway.

As a proprietor of a movie theater it is likely that you want a slightly more state-of-the-art solution than the daily editing of text-files to update your movie information. More importantly, the average customer has grown accustomed to web-sites that are as dynamic as typical computer applications.

To create web applications, it is necessary for software to be executing on the server side to dynamically produce HTML for consumption by the browser on the client side. There are a number of technologies that can be used to produce dynamic web applications, including CGI, ISAPI, JSP and legacy ASP.

The .NET Framework includes a technology called ASP.Net which takes server side web application development to the next level. It offers full object oriented development, including component derivation and composition. It also executes in the native machine language of the host system.

Meanwhile, the ASP.Net programming model allows the developer to write web applications while paying almost as little attention to HTML as the typical application developer pays to pixels. Web programmers no longer need to live and breathe HTML. With ASP.Net, HTML is simply a mechanism through which existing objects express their user interface.

To fully grasp the significance of ASP.Net it is necessary to take a brief look at existing technologies.

1.2. CGI, ISAPI DLLs and Scripts

The communication between a browser and a web server such as Internet Information Services is typically performed using a protocol called HTTP. HTTP is a stateless protocol. This means that a network connection is maintained with the browser just long enough to complete a single request-response conversation.

The most common language or information to be carried by HTTP communication is the HTML markup language. A client requests a resource, and the server responds with an HTML or related document. The client then uses the HTML and supporting documents to produce a user interface for the user. At this time the relationship between the browser-client and the web server is severed – that is until the next time the user clicks on a link or a button causing another request to a server.

Three classes of server side technologies have traditionally been used to produce web applications. In all three classes, the idea is that in response to the client request (and possible form-data posted back by the client), the server component will generate dynamic HTML which is then communicated to the web server software and ultimately communicated back to client. These three types of server-side web applications are CGI, ISAPI DLLs and server side scripting hosts. Here is a brief description of each.

CGI – CGI stands for Common Gateway Interface. In brief, any programming language that can read command line arguments and environment variables, as well as write output to standard output can be used to create CGI applications. CGI applications are supported by virtually every web server. There are two drawbacks to CGI. The first is that the CGI model does not scale well. The second is that the HTML and HTTP are pervasive part of the programmer’s experience. This makes for applications that are difficult to develop and maintain.

ISAPI DLLs – ISAPI stands for Internet Services Application Programming Interface and improves on the performance of CGI. In fact a properly written ISAPI DLL performs great, and for a while the developer community thought that ISAPI would be the prevalent technology. However, ISAPI DLLs are only supported on the windows platforms and continue to require the application developer to become very comfortable with HTTP and HTML in creating a web application.

Server-side Scripting – Scripting on the server side has been the most successful web-application development model thus far. In short, with script hosts such as legacy ASP (Active Server Pages) or JSP (Java Server Pages) it is possible to abstract much of the HTML and HTTP away from the developer. This makes it possible for the developer to focus on the application logic, which is much more important. However, scripting is slow and scalability can be poor.

In all three cases the browser is none-the-wiser, and simply displays the response results. In fact, for the most part the browser software never knows that the source of the response is not a static file sitting on the servers file system.

1.3. Putting ASP.Net into Perspective

ASP.Net is a new and exciting option for producing dynamic web applications. ASP.Net is a technology that ships with the .NET Framework and works together with the platform and Internet Information Services (IIS) to produce HTTP/HTML responses for browser clients.

ASP.Net is actually implemented as an ISAPI DLL. However, the ISAPI DLL hosts the .NET Common Language Runtime (CLR), and creates managed objects (much like the managed objects that we have been creating throughout this tutorial series). The managed objects that ASP.Net works with, however, are a subset of the Framework Class Library (FCL) known as Web Forms.

[image: image2.emf]Managed Process

Network

ASP.Net

ISAPI DLL

Hosting the .NET

Framework CLR

Web form

and custom

application

objects

Request and post-back

form information

HTML representation

of application UI

Web Server

(IIS)

Browser-Client

Figure 1‑2 ASP.Net in Context

The web form objects along with your custom application objects and derivations dynamically create HTML to represent their UI in response to client requests. The HTML is communicated to ASP.NET, and ultimately the results are sent to the client-browser.

Understanding where ASP.NET and your Web forms applications fit into the big picture will help you in creating managed web applications. This is true, first, because it is helpful to realize that most of what you already know about managed code is true of your web forms applications. For example, you can use any of the class library objects that we have discussed in this series so far, in your web applications, including collection classes, file-IO classes and graphics classes.

It is also helpful to be familiar with the big picture when writing web applications because ASP.Net based applications are still subject to the request/response nature of web communication. Much of the hassle of the stateless architecture is alleviated by clever features of the class library (which I will discuss shortly). However, when comes down to it, the client’s connection with your server-side application is no more stateful than any other web technology.

Now that we have looked at web application development in general, as well as the ASP.Net in perspective, we can begin to look at simple web forms applications.

2. Introducing Web Form Programming

Every web form application, even a simple one, is made up of two parts. The first is an .ASPX file that contains markup parsed by ASP.Net. The second part to your ASP.Net application is managed code written in your .NET compliant language of choice. ASP.Net weaves these two pieces together to create a complete (and natively executed) application composed of managed objects that represent their user interface automatically through HTML.

Note: Although the scripted .ASPX files are parsed by the ASP.Net engine at runtime, it should not concern you in terms of performance. The ASP.Net ISAPI DLL parses .ASPX files into managed code and compiles the code into binary assemblies. These assemblies are cached and reused. The end result is that a web form application must only be parsed once after each change to an .ASPX file.

As a web form developer you must be comfortable with at least one managed language such as C# or VB.Net. In addition you will have to be at least familiar with the markup syntax for .ASPX files. Let’s look at both the markup and the C# portions of a simple web forms application that generates a movie line-up dynamically through software.

<% @Page Language="C#" Inherits="MoviePage" Src="SimpleWebForm.cs" %>

<html>

<body background="Texture.bmp">

 <TITLE>Supermegacineplexadrome!</TITLE>

 <H1 align="center">

 Welcome to Supermegacineplexadrome!

 </H1>

 <P align="left">

 <U>Showtimes for <%WriteDate();%></U>

 </P>

 <%WriteMovies();%>

</body>

</html>

Figure 2‑1 Web form application part 1 -- SimpleWebForm.aspx

First it is worth noting that there are really only three differences between the dynamic ASPX markup in Figure 2‑1 and the static HTML found in Figure 1‑1. The .ASPX text is remarkably compatible with HTML even though the mechanism through which it works is quite different. Each of the additions to SimpleWebForm.aspx are surrounded by <%%> tag specifiers. These indicate to ASP.Net that there is markup that should be considered.

The first addition shown in green is the @Page directive which is used by most .ASPX pages. In Figure 2‑1, I use three attributes of the @Page directive to set the language for the page, the base class for the page and the source code file in which the base class is defined. I will get to base classes for .ASPX pages in a moment.

The remaining ASPX markup is shown in red and represent two C# method calls. If you revisit the HTML in Figure 1‑1, you will see that the two method calls in Figure 2‑1 represent the data that we would like to be dynamic – in this example data that potentially changes daily. These method calls must be implemented somewhere, and they must produce the appropriate HTML to fill in the remaining document for the browser client. This is where the C# part of a web forms application comes in.

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

public class MoviePage:Page{

 protected void WriteDate(){

 this.Response.Write(DateTime.Now.ToString());

 }

 protected void WriteMovies(){

 this.Response.Write(

 "<P>The Glass Ghost (R) 1:05 pm, 3:25 pm, 7:00 pm</P>");

 this.Response.Write(

 "<P>Untamed Harmony (PG-13) 12:50 pm, 3:25 pm, 6:55 pm</P>");

 this.Response.Write(

 "<P>Forever Nowhere (PG) 3:30 pm, 8:35 pm</P>");

 this.Response.Write(

 "<P>Without Justice (R) 12:45 pm, 6:45 pm</P>");

 }

}

Figure 2‑2 Web form application part 2 -- SimpleWebForm.cs

As you can see, the C# code in Figure 2‑2 implements a class named MoviePage which is derived from System.Web.UI.Page. Remember that MoviePage was designated as the base class for our web form application using the @Page Inherits attribute of the ASPX file. It is probably no surprise to find that MoviePage implements the two methods WriteDate() and WriteMovies() that are called from the ASPX markup. These methods produce the proper output and write them to the response stream. In this case, the data is fairly static, but since this is regular C# code you could retrieve the data from a more sophisticated source, such as a database.

To try out SimpleWebForm.cs and SimpleWebForm.aspx, you simply copy the two files to a virtual root directory (or a sub-directory of a virtual root) in IIS. For example, if you were to create a directory under WWWRoot called Simple, you could copy the two files to Simple, and then browse to the page using the following URL: HTTP://LocalHost/Simple/SimpleWebForm.aspx.

The example shown in Figure 2‑1 and Figure 2‑2 still suffers some limitations. First, it requires the web-developer to be comfortable with HTML (I will show you soon how web forms alleviates this). Additionally, this sample is simple and would be limited for a very large application. Web form applications get much cooler, as I will show you soon.

At this point, it is important to be aware of the existence of the .ASPX file, as well as the C# code that performs dynamic functionality. In the next section, I will break apart this example and explain exactly what ASP.Net does to make these two code files into a dynamic web site.

Exercise 2‑1 Deploy SimpleWebForms.aspx/ SimpleWebForms.cs

1. Save the code from Figure 2‑1 and Figure 2‑2 into .ASPX and .CS files. Copy the files to a directory under a virtual root for IIS.
Note: You must be running Win2k server or better, IIS, and you must have the .NET Framework installed.

2. Browse to the location of the .ASPX file.
Example: HTTP://LocalHost/Simple/SimpleWebForm.aspx

3. If the first hit to the site took some time, browse a second time and you should see marked improvement in performance (this is due to a server-side compilation mechanism which I will explain later in this tutorial).

Exercise 2‑2 Make Modifications to SimpleWebForms.aspx/ SimpleWebForms.cs

1. Now that you have a dynamic web application you can try simple modifications to the application.

2. First try modifying the static portion of the application (the .ASPX file) by adding HTML markup or by rearranging the existing markup.
Example: Move the date so that it also shows at the bottom of the movie listing.

3. Then, try adding code to the .CS file.
Simple Example: Add more listings to the WriteMovies() method.
Example: Change the text format of the date output.
More Complex Example: Add a method that produces more markup and call the method from inside of the .ASPX file.

2.1. How ASP.Net Works

Soon, I will describe how the web control classes work so that you can create dynamic web applications using objects like Button and TextBox, in much the same fashion that you would with a Windows Forms application. However, before we jump into that topic, I would like to describe the basic functionality that ASP.Net performs in conjunction with the System.Web.UI.Page class.

The ASP.Net web engine (an ISAPI DLL) knows a couple of things.

It knows how to parse its markup tags, recognizable because of their telltale begin-tag (<%) and end-tag (%>) specifiers. It also knows other HTML and ASP tags (more on this later).

It knows managed languages (through the help of parsing modules), such as Visual Basic .NET and C#.

It knows how to parse an ASPX file and produce a C# or VB.NET source code file defining a class derived from System.Web.UI.Page. This dynamically created object will eventually (and programmatically) produce the HTML + dynamic elements visually represented in the .ASPX file.

It knows how to compile its dynamic sources in addition to any sources that you give it into a managed assembly (.DLL) file. These files are cached -- more on this shortly.

ASP.Net knows how to host the Common Language Runtime (CLR) so that it can execute managed objects in process with its code.

Finally, ASP.Net knows which assembly to load and which object to instantiate to fulfill a given page request from a client.

ASP.Net is doing quite a bit. However, the interesting part is that it is not producing any HTML output directly. HTML production is the job of the Page class, or more specifically, a Page-derived class. This division of labor is very different from previous scripting engines such as legacy ASP and JSP. The division of labor between ASP.Net and the System.Web.UI.Page class is the key to the power behind web forms.

Once ASP.Net has decided which object to create, the work shifts over to managed code. The Page-derived object is managed. Its methods are represented in IL, and they are JIT compiled like any other managed code. The Page-derived object can also make use of other objects in the FCL. There are two advantages to this approach for creating dynamic web applications.

The first advantage is obvious. Your code is JIT compiled so it executes in native code. It will simply outperform interpreted solutions.

The second advantage is the manageability and extensibility of object oriented code. Now, the business logic of producing HTML as a UI for an application is performed by objects in an object library (rather than hard-coded into a scripting engine). What this means for the developer is that if they do not like the default functionality, they can change it. It is possible to derive from (or even replace) most of the web form objects and still take advantage the ASP.Net infrastructure. Meanwhile, your application will enjoy the structural advantages of being object oriented.

So let’s look back at the follow ASP.Net through the request for the SimpleWebForm.aspx file shown in Figure 2‑1.

1. A request arrives for SimpleWebForm.aspx and it is forwarded to ASP.Net by the web server, because of its file extension.

2. ASP.Net looks for an already compiled assembly in its assembly cache to fulfill the request (if it is found it can skip to step 4).

3. If an assembly does not match the SimpleWebForm.aspx then one must be created (and eventually cached). So it opens SimpleWebForm.aspx and begins to parse it.

a. The first line of SimpleWebForm.aspx is as follows:
<% @Page Language="C#" Inherits="MoviePage" Src="SimpleWebForm.cs" %>
This tells ASP.Net that the source code produced for this page should be in C# and that the object should be derived from a class named MoviePage. The Src tag tells ASP.Net that MoviePage is found in SimpleWebForm.cs which lives in the same directory as the .ASPX file.

b. Once the ground rules for this .ASPX file have been established, ASP.Net can begin to create source code for a page-derived class. ASP.Net looks for tags it recognizes. This includes certain HTML tags, all <%%> tags as well as <asp/> tags. It uses these tags to create source code to define a page-derived class specific to this .ASPX page. Note: Any HTML or other markup tags that ASP.Net does not recognize are simply cut-and-paste directly into the source code for the page-derived class.

c. Inline source code such as <%WriteMovies();%> becomes part of the dynamically created class. In the case of our sample, both inline source-code tags become calls to protected methods in the MoviePage base class.

d. Once the Page-derived (or in this case, MoviePage-derived) class is created, it and the referenced source code are compiled into an assembly created to fulfill requests for the SimpleWebForm.aspx file. This assembly is cached for future requests.

4. The assembly to fulfill the request is then loaded by ASP.Net into the process that is hosting the Common Language Runtime (CLR).

5. An instance of the new MoviePage-derived object is created. This object is given the chance to parse the request from the browser, including any post-back data. Most of this parsing is performed by System.Web.UI.Page. Then the object produces the HTML that it was designed to produce.

6. The HTML from the object is passed back to ASP.Net which passes the response to IIS. IIS is the web server in this equation, and it communicates the response back to the browser client.

Note: ASP.Net disposes of Page derived objects after each request is fulfilled. On a subsequent post-back from the client a new instance of the Page-derived object is created, and its state is populated with information from the request. This may seem less efficient than keeping an object around to handle multiple requests, but in fact the opposite is true. Allocations and garbage collection of short-lived objects such as web form objects is very efficient in managed code.

There you have it! The typical request through the preceding steps completely skips step 3, and ASP.Net uses managed code to produce dynamic HTML very efficiently.

2.2. Web Controls

Web controls are the objects defined in the FCL (Framework Class Library) that make your web development lifestyle enjoyable and rewarding. Web controls really don’t perform any magic; all they do is build upon the ASP.Net infrastructure covered in the preceding section. The web control classes, however, are designed to abstract the HTML reliance away from web-application development. Here is the short version of the story.

Web controls represent some element on a web page. These are the elements from which applications are constructed, such as buttons, text boxes, list boxes and the like. In you web applications your Page derived class maintains a collection of the control objects representing UI elements of the page. Web control objects know how to represent their state and UI in HTML terms. So when it comes time for the Page class to produce its HTML response, it relies on the controls in its collection to contribute markup representing their UI.

Let me show you a simple web form application that includes a couple of web control objects to help build its UI.

<% @Page Language="C#" Inherits="DatePage" Src="WebControls.cs" %>

<html>

 <TITLE>Date Picker</TITLE>

 <body bgColor="#66cc99">

 <H1 align="left">

 Some Active Web Controls

 </H1>

 <Form method="post" runat="server">

 <P align="left">

 Enter a Date Here

 <asp:TextBox id="date" runat="server"/>

 <asp:Button id="button"

 Text="Then press this button"

 runat="server" ></asp:Button>

 </P>

 <P align="left">

 <asp:Calendar id="calendar" Visible="false" runat="server">

 </asp:Calendar>

 </P>

 </Form>

 </body>

</html>

Figure 2‑3 WebControls.aspx

The ASPX markup shown in Figure 2‑3, once again is mostly standard HTML; however, it does define three web controls shown in red. Like the examples we have already seen, WebControls.aspx also defines a base class DatePage which I define in Figure 2‑4 below. The runat="server" attribute of each control tag is ASP.Net’s cue to implement these controls on the server side. The asp: portion of the tag is shorthand for the System.Web.UI.WebControls namespace.

In other words, the following markup:
<asp:TextBox id="date" runat="server"/>
tells ASP.Net that when it is creating source code for a DatePage-derived type it should instantiate an instance of the TextBox type and store its reference in a protected field named "date". Then, the source code should add the control to the Page-derived object’s Controls collection, so that when the page renders itself, the TextBox object can do its part.
The parsing of these tags into source code allows the application developer to work directly with the web controls in the base class implementation as follows.

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

public class DatePage:Page{

 protected TextBox date;

 protected Button button;

 protected Calendar calendar;

 protected override void OnLoad(EventArgs e){

 base.OnLoad(e);

 button.Click += new EventHandler(OnButtonClicked);

 }

 protected void OnButtonClicked(Object sender, EventArgs args){

 String dateString = date.Text;

 try{

 DateTime enteredDate = Convert.ToDateTime(dateString);

 calendar.SelectedDate = enteredDate;

 calendar.VisibleDate = enteredDate;

 calendar.Visible = true;

 }catch(FormatException){

 calendar.Visible = false;

 }

 }

}

Figure 2‑4 WebControls.cs

The names of protected members shown in red match the id attributes in the markup file. The type DatePage is the type that is inherited in the .ASPX file. In this example, a virtual method OnLoad() is overridden by the DatePage class so that an event handler can be wired to the button object’s Click event. The handler method reads the text property of the TextBox object, converts the string into a DateTime instance, and then sets the Calendar control to display the selected month.

When the event handler is finished adjusting the state of the web control objects, the Page-derived object re-renders its HTML, including the controls’ rendered HTML. The code sample shown in Figure 2‑3 and Figure 2‑4 demonstrates how close your web application code can be to typical software development. Most of the application logic is in the WebControls.cs file. The WebControls.aspx file is mainly used for arrangement of elements on the page, and can more or less be treated as the web equivalent of a dialog resource. The resulting web page looks something like the following.

[image: image3.png]2 Date Picker - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Q-0 NE I roates @) et

s] Wt flocabostWebFormsWebCortrolWebContob.sps V8w

Links >

12/1211972

Then press this button

< December 1972
Sun Mon Tue Wed Thn
2

3 Loca mronet

Figure 2‑5 http://*/WebControls.aspx

The FCL defines a number of web controls, and if you do not find controls that meet your needs, it is a fairly simple task to design your own WebControl derived class for use in web form applications. The following is a partial list of web control objects shipping with the .NET Framework.

	Control
	Description

	AdRotator
	Implements a rotating banner add.

	Button
	Implements a button for web user interface.

	Calendar
	Implements a highly configurable calendar UI.

	CheckBox
	Implements a check box for web UI.

	DataGrid
	Implements a table that supports automatic binding to data sources.

	HyperLink
	Implements a dynamic hyperlink.

	Image
	Implements an image for inclusion in web UI.

	Label
	Implements a dynamic label or text output.

	LinkButton
	Implements a hyperlink style button.

	ListControl
	Implements a list box for web UI.

	Panel
	A virtual control that is a collection of controls. This control is useful for treating a block of controls as a single entity. For example, it is easy to create a Panel to cause blocks of controls to appear or disappear from the rendered HTML.

	Table
	Implements a simple table with custom rows and cells.

	TextBox
	Implements an editable text box for web UI.

	RangeValidator
	Implements a validator that assures that an entry in another control on the page falls within a given range. Validator controls automatically generate client-side script to perform validation for browsers that support JScript. Whether or not validation is performed on the client side, validation is also performed on the server side by the control.

	RequiredFieldValidator
	Implements a validator that assures that an entry was made to a field.

Figure 2‑6 Web Controls

If you have not already done so, I strongly suggest that you copy WebControls.aspx and WebControls.cs from Figure 2‑3 and Figure 2‑4 into a virtual root directory on your system and try the web application. This simple sample demonstrates a surprising number of important features of web form applications.

Exercise 2‑3 Deploy WebControls.aspx/WebControls.cs

1. Save the code from Figure 2‑3 and Figure 2‑4 into .ASPX and .CS files. Copy the files to a directory under a virtual root for IIS.
Note: You must be running Win2k server or better, IIS, and you must have the .NET Framework installed.

2. Browse to the location of the .ASPX file.
Example: HTTP://LocalHost/Simple/WebControls.aspx

3. Enter a date in the format dd/mm/yy or dd/mm into the text box and press the button. A calendar with the selected day should appear in the responding HTML.

Exercise 2‑4 Viewing Source of Deploy WebControls.aspx

1. After deploying WebControls.aspx, browse to the resource.

2. Use the browser option to view the source HTML for the page. You will notice that the HTML is similar to the markup in the .ASPX file, but it is not exactly the same.

3. Now enter a date and press the button.

4. View the source this time. Again, you will notice that the HTML does not match the .ASPX file, but this time the difference is more marked. This is because the Calendar control has been made visible, so it has rendered its UI in HTML.

Exercise 2‑5 Modifying WebControls.aspx

1. It is time to make modifications to the WebControls.aspx web application.

2. Try adding a control or two. Perhaps add a list control or another button.

3. Try adding code to the DatePage class to manipulate and respond to events fired by the new and existing controls on the page.

2.3. Event Wire-up and Overriding Virtual Methods

If this were a tutorial on non-web applications this section would not be necessary. This is because event handling happens in real time with regular applications. For example, a user clicks a button and your application responds to the button’s Click event. In a Windows Forms application the sequence of events is very intuitive. This is not necessarily the case for web applications.

The web forms application architecture is designed to make the stateless and networked nature of web applications as invisible to the developer as possible without limiting what the developer can accomplish with the tool. To a great extent this goal is met. However, the stateless nature of web request/response sequences does show itself when it comes to event wiring. Here is an example.

Suppose a user has browsed to an .ASPX page that contains a TextBox control and a Button control. Now imagine that your .CS file has wired an event handler for both the TextBox.TextChanged event and the Button.Click event. Let’s further suppose that the user types some text into the TextBox and clicks on the Button. The results, in terms of event handling, may surprise you.

Remember that your code to respond to these events runs on the server side. However, the user is entering text and clicking buttons into a browser on the client side. Therefore it is not typically desirable that the TextBox.TextChanged event would be fired for each change to the text, as that would require a network trip every time.

Instead, essentially nothing happens until the user clicks on the button, which causes a post-back request to the server. As the new page-derived object sets up its state from the request, it discovers that the text in the TextBox control’s property has changed and it calls the appropriate event handler. Then, when the passive events have been handled, the event handler for the button (the post-back event) is called.

Note: For some controls it is possible to set the AutoPostBack property to true to convert a passive event into an event that causes a post-back to the server. It is not common to set this property to true for these controls. Doing so can increase the load on your web server significantly.

The Page class, as well as the various web control classes, implements virtual methods that can be overridden in derived classes. These methods are subject to the same delayed execution that event notification experiences. In fact, the events are fired by the base implementations of the virtual methods. The order of processing for server-side events and virtual methods is well defined and covered in detail in the following two SDK topics in the documentation: Web Forms Page Processing Steps and Web Forms Event Model.

In general, the binding between the actions of the user and the application logic is very loose in web applications. This complicates your web application development task, but surprisingly not as much as you might expect. Most web developers become intuitively comfortable with the request-response nature of their application.

3. Writing Web Applications

We have covered quite a bit so far. The topics up until now are very much the infrastructure pieces. Web applications also bring up application development and architecture questions. So let’s discuss these topics briefly.

3.1. Building and Deploying Web Applications

Up until now I have been focusing on a particular style of developing and deploying web applications known as code-behind. In addition to my insistence on using only code-behind in this tutorial I have also been using the less common of two code-behind techniques. Let me explain.

There are three ways to develop and deploy web form applications.

Inline code – It is actually possible to write both your markup and your C# application logic in single .ASPX file (with no supporting .CS file). The code is included mixed-in with the markup as code declaration blocks specified using <Script/> tags. This feature is similar to the ASP source model.

Code-behind – There are two code-behind mechanisms. Both mechanisms share in common the fact that code logic is separated from the markup that makes up the .ASPX file.

The simplest code-behind mechanism is the one that we have I have been using in the samples in this tutorial. The source code containing the base class for the .ASPX file is maintained in a .CS file and stored in the directory with the .ASPX file. Meanwhile the Src attribute is used with the @Page directive to indicate the name of the .CS file containing the base class. The markup tends to look something like the following.
<% @Page Language="C#" Inherits="MoviePage" Src="SimpleWebForm.cs" %>
The second and more common form of code-behind is slightly more complex. It involves building the base class for your .ASPX page into an assembly .DLL file and deploying the .DLL file with your .ASPX page(s). This method has several advantages. First, several .ASPX files can have their base classes in a single assembly. Second, the code is compiled and therefore less modifiable. One disadvantage of this mechanism is that the assembly file must be deployed to a \bin directory under your virtual root directory, rather than in the same directory as the .ASPX file. This code-behind mechanism, like the last one, requires the use of the Inherits attribute of the @Page directive.

You should use code-behind deployment for all of your applications. The inline code method should really only be used when porting ASP applications to .ASPX applications.

Which code-behind mechanism you use is up to you, however, for larger projects you should consider using the compiled form (where you distribute an assembly). This is the mechanism used by projects created using Visual Studio .Net.

3.2. Using Visual Studio .NET

I can hardly discuss the topic of building and deploying web applications without mentioning Visual Studio .NET. VS .NET has rich support for building web applications, including a visual designer based on Front Page. You can use the visual designer to create the .ASPX portion of your project, including the ability to drag and drop controls such as buttons and text boxes onto your page.

Once you have designed the layout of the page, you can begin double clicking on controls to add code to your code-behind source file. Although it is not necessary to use VS .NET to build your web forms applications, it is likely that many developers will choose to use it.

3.3. Application Architecture

At this point you know a surprising amount about the nuts and bolts of ASP.Net and web form applications (more than many web forms developers will ever know). The pieces of the puzzle have been laid before you, but there is much to learn about the ways that these pieces are used to create complete applications. This tutorial can’t begin to describe everything, but this foundation knowledge of the infrastructure should help you as you build your knowledge of web-applications.

The framework class library includes classes and methods to help you with such web application problems such as session management, state management and security. Many of the challenges that face the web developer do not face the developer of client-side applications.

For example, the developers of Microsoft Word never have to worry about an end user jumping straight into the grammar checking dialog box before the application has had a chance to initialize itself. However, a web application developer enjoys no such luxury. A user can store a bookmark into what is effectively the middle of an application and your web applications must deal gracefully with this. This is just one example of a number of situations that must be handled by web applications.

Included with this tutorial is a complete web application that addresses some of these challenges (such as session management), while ignoring others (security). The application’s name is Draw.aspx, a more featureful version of the sample program published with the very first tutorial in this series. You might find the sources for the application helpful in learning more about web form development.

For further delving into web applications written with the .NET Framework I strongly suggest checking out www.IBuySpy.com. The IBuySpy.com website is a mock online department store implementation with an international spy theme. The great part about this site, however, is that it is entirely implemented using ASP.Net, and the complete source code is available online.

I hope you enjoy building web applications as much as I have!

Content Developed by Jason Clark
