Description: This document is a tutorial in a series of tutorials for programmers learning about the .NET Framework development environment. This tutorial covers XML Web Service programming with the .NET Framework.

Requirements: You should be familiar with at least one programming language, such as C++, Pascal, PERL, Java or Visual Basic. This tutorial assumes familiarity with Windows Forms programming and the .NET Framework in general. Introductory tutorials on both of these topics have already been release in this tutorial series. To do the exercises and run the examples you need a PC running Windows 2000 Server (or better) with Internet Information Services and the .NET Framework installed.

© 2001 Microsoft Corporation. All rights reserved. Reproductions with permission from Microsoft Corporation.

Table of Contents

Table of Contents
1
Figures and Exercises
2
1.
Programming XML Web Service Applications
3
2.
Creating and Consuming an XML Web Service
3
3.
Why XML Web Services
6
3.1.
The Theater Scenario (Free Data)
7
3.2.
Credit Card Purchase Scenario (Data that Costs Money)
8
3.3.
Large Institution Scenario (Application Integration)
9
3.4.
Why Web Services?
9
4.
XML Web Service Infrastructure
9
4.1.
Web Service Standards and Protocols
10
4.2.
The .NET Framework and ASP.Net
11
4.3.
Testing XML Web Services Using a Browser
14
4.4.
Advanced Web Services
18
4.5.
XML Web Service Clients
20
5.
XML Web Services
21
Figures and Exercises

Figure 2‑1 DateService.asmx
4
Figure 2‑2 DateClient.cs
4
Figure 4‑1 XML Web Services and ASP.Net
11
Figure 4‑2 Prime.asmx
13
Figure 4‑3 Browser-testing XML Web Services
15
Figure 4‑4 Browser-testing XML Web Service Methods
16
Figure 4‑5 Browser-testing SOAP Response
17
Exercise 2‑1 Deploy DateService.asmx
5
Exercise 2‑2 Build DateClient.cs
6
Exercise 2‑3 Modify the Client and Server
6
Exercise 4‑1 Browser-test Prime.asmx
17
Exercise 4‑2 Extra Credit: Optimize Prime.asmx
19

1. Programming XML Web Service Applications

Web services are an important part of the .NET Initiative. Much of our industry is moving into the direction of delivering software as service objects on the Internet. This tutorial is the last in a series of tutorials about the .NET Framework, and it is on the topic of XML Web services.

The interesting thing about Web service programming with the .NET Framework is just how easy it is. So easy, in fact, that writing this tutorial poses an interesting challenge for me. The truth is that much of the infrastructure of the .NET Framework (many of the topics discussed in earlier tutorials in this series) work together to make the developer’s task very simple and productive if Web service software is what they are writing. Technologies such as JIT compilation, metadata, the Framework Class Library and ASP.Net are woven together to make distributed web objects a breeze to both create and deploy.

Now that I have told you about the challenge I am faced with in writing this document, I will tell you how I intend to approach the topic. For those of you who have read many of the other topics, this may seem like a diversion from the typical style.

First, I plan to prove to you how easy it is to develop a Web service, by walking through the steps required to create one. A side effect of step one is that you will learn what a Web service is if you are not already familiar with the term.

The second thing I plan to do is show you how easy it is to call and consume the data from a web-service. These first two steps should take me about one to two pages of tutorial text.

After this, I hope to relay the motivations for Web services (why you should care about this technology), and the infrastructure that makes them possible. This will be what most of this tutorial covers, because this is actually the most difficult part of the technology to grasp: “The why.” The reason it is difficult is because web-services represent the beginnings of what could turn out to be a substantial shift in the way software is developed, deployed, purchased, and generally consumed by the world. But I am getting ahead of myself.

2. Creating and Consuming an XML Web Service

The following code is a Web service object. It doesn’t do much, but it does show much of the idea behind Web services. This object simply returns a string describing the current date and time.

<%@ WebService Language="C#" Class="DateService" %>

using System;

using System.Web.Services;

public class DateService:WebService{

 [WebMethod]

 public String GetDateString() {

 return DateTime.Now.ToString("D");

 }

}

Figure 2‑1 DateService.asmx

The code in Figure 2‑1 describes a server side object that provides data for a client. However, unlike web applications, a Web service does not serve its data to a browser. Instead, a Web service serves its data to other software.

In the case of the DateService.asmx its not what the service does that is interesting, but rather what the service doesn’t do. (After all, what is does is return the current date in the form of a string). But what it doesn’t do is implement any network communication code, nor does it deal with any protocol code. That’s the infrastructure to which I am referring. The .NET Framework handles network communication and protocol parsing through ASP.Net and the class library, so that the DateService.asmx can focus on its business logic.

Note: The two lines of code in Figure 2‑1 shown in green represent markup parsed by ASP.Net and a managed attribute. I will explain the significance of both later in this tutorial.

Deploying this Web service is as simple as copying the .ASMX file into a directory in your file system that is configured as an IIS virtual root. This is because IIS (Internet Information Service) is the host for your service object (and a listening/communication agent).

Now imagine that the DateService.asmx Web service has been published to a URL on the internet; for this example let’s assume http://www.wintellect.com/Services/DateService.asmx, and you want to consume this object with client code running on your machine. Here is what the client code looks like.

using System;

class App{

 public static void Main(){

 DateService webObj = new DateService();

 webObj.Url =

 "http://www.wintellect.com/Services/DateService.asmx";

 String dateString = webObj.GetDateString();

 Console.WriteLine(dateString);

 }

}

Figure 2‑2 DateClient.cs

If you are finding it hard to believe that this is all the code that is required to consume a distributed object exposed on the Internet, then you would be correct. But this is all of the code that you have to write. The DateService type is actually derived from a class library type called SoapHttpClientProtocol. The SoapHttpClientProtocol type actually does most of the work of communicating with the Web service, and the DateService type is just a specific derivation of the base class designed for communicating with the DateService.asmx.

So, if you don’t have to write the DateService class that is derived from SoapHttpClientProtocol, then who does? There are actually two answers to this question. Visual Studio .NET will create a proxy derivation class for you, or you call the WSDL.exe tool that ships for free with the .NET Framework, and it will do the same.

Note: If you are wondering how a tool is able to find sufficient information to create code for a specific service, the answer is in the WSDL service contract. WSDL stands for Web Service Description Language, and all Web services can be described by a WSDL document (that is part of being a Web service). I will talk more about WSDL shortly, but for now, just be aware that Web services that you create using the .NET Framework can automatically describe themselves using WSDL, simply by adding ?WSDL to their URL.

So that’s it! It takes less than 25 lines of C# code to write both a Web service and a client to consume the service. I will admit that a lot of work is happening automatically. But don’t worry, I will explain the magic parts such as client proxies, WSDL, etc. shortly.

Normally, the exercises are optional, but for this tutorial I strongly suggest that you work through these first two exercises.

Exercise 2‑1 Deploy DateService.asmx

1. Save the code from Figure 2‑1 into an .ASMX file. Copy the file to a directory under a virtual root for IIS.
Note: You must be running Win2k server or better, IIS, and you must have the .NET Framework installed.

2. We can test our deployment by asking the service for it WSDL. Browse to the location of the .ASMX file, but add the ?WSDL to the URL.
Example: HTTP://LocalHost/DateService/DateService.asmx?WSDL
3. If your browser displays a structure XML file that begins with this markup
<?xml version="1.0" encoding="utf-8" ?>
then your service deployment is working. If anything else is displayed in your browser window, then the deployment is not working.

a. If your .ASMX file did not return WSDL to you, here are the likely reasons why.

IIS is not installed on your system.

The .NET Framework is not installed on your system.

Your system is not running Windows 2000 or better.

You are running .NET Server, and the ISAPI extension for ASP.Net is not enabled in the IIS 6 Security settings.

IIS was installed after the .NET Framework was installed.

4. Great! You made it to this step, so your service is working. Now on to the next exercise.

Exercise 2‑2 Build DateClient.cs

1. Copy the contents of Figure 2‑2 into a .cs file.

2. Before you can build the DateClient.cs application you must create another .cs file with the proxy derivation of SoapHttpClientProtocol. You do this using the WSDL.exe tool.

3. You can call WSDL.exe with only one command line if you like, and that is the URL of the WSDL for the service for which you wish to create a proxy derivation.
Example: WSDL.exe HTTP://LocalHost/DateService/DateService.asmx?WSDL
4. Running WSDL.exe in this way should create a .cs file named DateService.cs. You can build your application using the command line compiler as follows:
csc.exe DateClient.cs DateService.cs

5. Run the resulting executable to see if it writes the current date to the console window.

Exercise 2‑3 Modify the Client and Server

1. Try adding a new method to the DateService class found in DateService.asmx. (It doesn’t have to follow the date oriented theme for this exercise.) A simple method that adds to integers will do.
Example:
[WebMethod]
public Int32 AddNums(Int32 x, Int32 y) {
 return x+y;
}

2. Once you save the .ASMX file, the service is ready to update itself for the next client request. However, any client code will need to change to use the new method.

3. Go through the steps of the previous exercise to recreate a derivation proxy using WSDL.exe.

4. Now modify the client code to try the new method.

3. Why XML Web Services

At this point you should have a taste for what a simple Web service is and how you can create and use them with managed code. Later in this tutorial I will spend more time talking about development details and infrastructure. For now, however, I would like to take a side-trip into the topic of why Web services are important.

Web services are really nothing more than a fancy remote procedure call (RPC) technology. However, the real value is in the fancy parts. Unlike other RPC mechanisms Web services offer all of the following benefits.

· Performance – Web services use the SOAP protocol which stands for Simple Object Access Protocol. SOAP runs on HTTP which is a stateless request response protocol. This statelessness provides just the scalability necessary for an Internet distributed RPC mechanism.

· Interoperability – Web services are based on SOAP. SOAP is based on HTTP and XML. All of these standards are simple and well defined. Any platform can use them, and many platforms already have existing libraries and code for dealing with these standards. The net result is that web-services do not have any affinity to a platform, language, environment, etc.

· Well defined – The Web Service Description Language or WSDL (also XML based) is an important benefit of Web services. This is because WSDL is well defined. This means that a tool can be used to parse WSDL and create a code or some other mechanism to connect to a Web service. This potentially simplifies coding tasks relating to Web services. Conversely, a service that knows enough about itself (such as a web-service written using managed code, which enjoys the benefits of metadata) can be made to automatically describe itself in terms of WSDL.

These benefits are not small ones; they mean that for a great many applications their network communication can be simplified and executed in terms of object instantiation and method calls. This is true while still retaining the necessary performance. The ability to perform network communication on such simple terms will increase the agility of applications and massively increase data sharing in the industry.

Let’s take a look at some scenarios.

3.1. The Theater Scenario (Free Data)

Many companies, especially retail and service oriented companies, have data that they want the world to know. By have´what I mean is that somebody or some thing knows the information. Let’s take for example a movie theater.

Theaters have information that they would like the general public to know. Primarily facts like the price of admission, which movies are playing and at what times, which showing are matinees, etc. It is in the theater’s best interests to distribute this information as widely as possible.

Most theaters solve their distribution problem using a number of mechanisms including

· Phone numbers with recorded messages

· Newspaper listings

· Web sites

The phone and web-site solution share a problem in common. They both require the potential customer to seek out the theater. This is not true of the newspaper listing; however, the newspaper is inefficient and fairly static, as a source of information goes.

The ideal solution is a web site or application that collects listing from every theater in town and displays them in a browsable fashion for the user. Such sites do exist today, but they require one of two things to happen: manual entry of listings and coordinated data sharing. The cost of these solutions may be acceptable for listings sites, because movies are popular and listings generate traffic. But what about industries that are less popular or less well organized, for example bag-pipe parts and services?

Now let’s look at the Web services solution. Each theater publishes their listings and other theater information as a public Web service. Then each theater consumes their own Web service to produce their dynamic web-site for the theater. The theater companies job is done.

Any site that wants to offer aggregate listings of theaters now needs only to know the published URL of a theater’s Web service and the published URL for the Web services WSDL document, and it will be a trivial thing to consume the theater’s data. This drastically reduces the cost of consuming this data, because it requires no manual entry, and it requires no agreement on data exchange format (except for SOAP). This reduced cost of consumption will cause the information to be shared and aggregated in more ways. In fact, the local newspaper would do well to consume the theater Web services, and automatically generate their listings as well.

Now, the benefits of this approach apply to many industries. For example, if restaurants commonly hosted Web services that produced menus and accepted reservations getting a reservation would quickly become an automatable and searchable task. And not just with a few restaurants that sponsor a reservation site, but with every restaurant in town.

Retail outfits would do well to publish their sales through a service. Why? Because consumers want to know the information, and someone will make a sale-searcher website that consumes all of the retail services in town hunting for sales. The possibilities are limitless.

3.2. Credit Card Purchase Scenario (Data that Costs Money)

Credit card purchases are automated through software today. There are companies that will run a credit card transaction on behalf of a retailer, and they take a fee for the service. This is an example of a service that already exists that would benefit from being moved over to Web services, not because it isn’t already automated, but because it is not sufficiently simple.

If your transaction fulfillment service requires little more than an object instantiation and a method call, then your service will be competitive over one that requires adherence to a protocol.

3.3. Large Institution Scenario (Application Integration)

Most large institutions such as schools and corporations have a local area network on which data is shared. It has become very common for various groups inside of a company to expose information about their group via small web-sites and similar medium. Similarly departments inside of an institution such as human resources or accounting will often expose tools via an enterprise network.

These data sources and services are commonly implemented as web-sites and they represent usable but largely isolated islands of data or business logic. The results of this is that it is actually common for network and web site developers in an institution to develop HTML screen scraper utilities that grovel over web sites in the company to aggregate data. This is efficient, and often the results are a less than optimal solution.

The Web service solution is this: every website that exists in a corporate or local network today should be broken up into two pieces. The first is a Web service that exposes the data or performs the processing that the old web site used to fulfill. Then a thin web site should be created to expose the Web service to the browser.

As institutions begin to take this approach data and business logic will begin to be shared much more readily. Now the functionality of each of these departments’ sites is no longer an island, but a fully accessible channel for aggregation.

3.4. Why Web Services?

To summarize these scenarios, the whole goal is sharing of information and logic as objects on the network. It is no longer acceptable to only use the Internet as a browsing tool. Data sharing is not a new idea, however the key to the Web service solution is just how easy and interoperable Web services are.

In the long run a technology like Web services will bring the computer industry into the world of science fiction where every computer is not only connected, but can share any information with ease.

Ok, there is the why, now for the how.

4. XML Web Service Infrastructure

In the first section of this tutorial I showed you a simple Web service that returned the current date to a client application. Although the implementation of the service was simple, the underlying technology still remains a mystery. In this section I will cover the topics that dispel this mystery. First, let’s start with standards and protocols.

4.1. Web Service Standards and Protocols

The .NET Framework is not the only platform to provide functionality for creating and consuming Web services. In fact, if you check out www.xmethods.com (an independent web site devoted to nothing but XML Web Services) you will find links to many free Web services of which the majority are implemented using technologies other than the .NET Framework.

This interoperability between platforms would not be possible if it weren’t for some standards. Here are the standards and the role that they play in the Web services.

· TCP/IP – Web services communicate, ultimately, using the internet protocol.

· HTTP – Web services are communicated using HTTP, by default, which allows existing web servers to be used as a listening mechanism for the services.

· SOAP – Soap is a remote procedure call protocol, typically using HTTP as the transport layer, and XML as the data format. It is possible, but less common, to use SOAP over other transport protocols such as SMTP.

· XML – A markup language that purposefully does not have a specific use (unlike HTML which is used for displaying UI). XML has proven to be a very reasonable data format for automation of data sharing.

· WSDL – Web Service Description Language is XML data following a schema (xmlns="http://schemas.xmlsoap.org/wsdl/”) designed to describe an existing Web service, including its method calls, parameters, location, etc. WSDL is the reason that it is possible for tools (such as WSDL.exe) to be used to create proxy classes for calling services. WSDL is also the reason that a standards committee is no longer necessary each and every time some new form of data is shared by computers.

Other standards exist for things like service searching and discovery. However, the ones listed are the most important. And remember that the purpose for these standards is so that any platform can consume and produce any Web service data.

Note: It is a goal of XML Web services to use standards that do not constrain the uses of XML Web services. For example, SOAP is a very weakly typed RPC standard. This weak typing makes it more likely that any platform can use the protocol and it makes it less likely that the definition of the protocol will limit some future use for it. This is approach is nearly a polar opposite from previous data exchange standards, where every bit was well defined and documented.

4.2. The .NET Framework and ASP.Net

So if the whole point of Web services is interoperability with many platforms, what does the .NET Framework offer that other implementations don’t? The answer is simple. It is simple.

The whole spirit of XML Web services is simple exchange of data. The infrastructure pieces of the .NET Framework such as the Common Language Runtime and ASP.Net have been designed so that Web service development in this platform respects the simplicity goal quite effectively.

However, any platform can make a single task simple to perform. The challenge is in making the common tasks simple while remaining flexible enough to enable the more esoteric cases. Understanding the architecture of Web services developed using managed code will help you to make the most of the platform.

XML Web services, such as the one in Figure 2‑1, are parsed and hosted by the ASP.Net ISAPI DLL that is registered when the .NET Framework is installed. In fact, the relationship between your managed Web service code and ASP.Net is very similar to the relationship between managed web applications and ASP.Net that I described in the tutorial Programming Web Applications with Web Forms.

[image: image2.emf]Managed Process

Network

ASP.Net

ISAPI DLL

Hosting the .NET

Framework CLR

XML Web

Service

objects

SOAP Method Request

(After Marshalling)

SOAP Method Response

(Before Marshalling)

Web Server

(IIS)

Service-Client

Figure 4‑1 XML Web Services and ASP.Net

In a way, managed XML Web services are simpler than managed web forms. Web services have no user interface and do not need to create a markup response. All that is necessary is that ASP.Net in conjunction with the class library marshal the SOAP requests into method calls, and then marshal the method return value into a SOAP response.

Note: Marshalling is a term describing the packaging or wrapping of data or parameters so that it can be communicated over some medium other than a thread’s stack (where most method call parameters are placed). In the case of ASP.Net method parameters and return values are marshaled into a standard protocol, SOAP.

The key to ASP.Net’s ability to automatically marshal method calls and return values is reflection and metadata. If you recall the tutorial on the Common Language Runtime, metadata is structured information stored with managed code that describes the classes and methods in the managed assembly. Reflection is the runtime ability to discover the information stored in metadata.

So the ASP.Net engine has all of the information that it needs about your Web service to marshal a SOAP request into a parameter list that is compatible with your object’s method, and then it also knows enough about the data returned from your method to marshal it back into a SOAP response.

Let’s take a look at another simple XML Web service that exposes two methods. One of the methods returns a single prime number and the other returns a block of prime numbers.

<%@ WebService Language="C#" Class="PrimeService" %>

using System;

using System.Web.Services;

public class PrimeService:WebService{

 [WebMethod]

 public Decimal GetPrimeAfter(Decimal after){

 return PrimeHelper(after);

 }

 [WebMethod]

 public Decimal[] GetPrimesAfter(Decimal after, Int32 count){

 Decimal[] results = new Decimal[count];

 for(Int32 index = 0; index < count; index++){

 results[index] = PrimeHelper(after);

 after = results[index];

 }

 return results;

 }

 Decimal PrimeHelper(Decimal after){

 if(after < 2){

 throw new ArgumentException("after value must be >= 2");

 }

 Decimal checking = Math.Round(after)-1;

 if(checking%2 == 0){

 checking += 1;

 }

 Decimal test;

 Decimal testTo;

 do{

 checking += 2;

 testTo = Math.Round((checking/4)+1);

 for(test = 3; test <= testTo; test += 1){

 if(checking % test == 0)

 break;

 }

 }while(test <= testTo);

 return checking;

 }

}

Figure 4‑2 Prime.asmx

The importance of the code in Figure 4‑2 is, again, not what it does, but rather the ASP.Net infrastructure that it uses. Notice the portions of the code in Figure 4‑2 that are shown in red. These are examples of custom attributes that attribute the metadata for methods of a class; in this case the attribute defined by the class library called WebMethodAttribute. Notice also that the code in Figure 4‑2 actually defines three methods: GetPrimeAfter(), GetPrimesAfter() and PrimeHelper(). The ASP.Net host will not expose the PrimeHelper() method as a XML Web service method because it does not have the WebMethodAttribute associated with it.

When you use an attribute in managed code, the compiler annotates the natural metadata (in this case the metadata describing a method) with additional metadata described by the custom attribute. The ASP.Net Web service engine knows that it is using your object to serve a Web service request. It can also find out which object methods are attributed with the WebMethodAttribute by using reflection.

Reflection plays an important role in the relationship between your Web service objects and ASP.Net. The designers of ASP.Net and the class library decided to use attributes as a means for describing to ASP.Net exactly how you want your Web service to look to the outside world. This becomes important as you begin to make more advanced Web services and you want to wield more control over the details of marshalling and the WSDL produced for the service.

4.3. Testing XML Web Services Using a Browser

In section 2, Creating and Consuming an XML Web Service, I told you that you can browse to the location of a web-service to get the WSDL for the service simply by adding ?WSDL to the url. For example:
http://localhost/Services/Prime/Prime.asmx?WSDL
When you do this the ASP.Net ISAPI DLL is utilized by the web server, because of the extension of the requested resource (.asmx). Meanwhile, ASP.Net notices that this request is not structured as a SOAP request, and that you added the ?WSDL to the URI. So ASP.Net assumes that you are not attempting to call the service object’s methods, but rather that you want it to dynamically create a WSDL document describing the service. This is another feature is a convenience that is possible largely because of reflection and metadata.

ASP.Net provides another useful feature, similar to automatic WSDL generation, and that is browser-testing of Web services. If you browse to a web-service using a browser, ASP.Net can detect that you are not structuring your HTTP request as SOAP. In this case it assumes that you are debugging your Web service and that you would like some help. Because ASP.Net knows everything that there is to know about your service, it can create a fairly advanced web GUI to let you see the methods exposed by your service, as well as to try them!

If you were to request the Prime.asmx Web service (for example http://localhost/Services/Prime/Prime.asmx) using a browser rather than an XML Web service client, the ASP.Net ISAPI DLL will produce an HTML response that looks something like the follow.

[image: image3.png]2 PrimeService Web Service - Microsoft Internet Explorer

Ele Edt View Favortes Toos el

Qs - © - 1 B O Oswr Srrons @ @3- 2 - 1)

Adress | €] http: flocalhost/Services{Prime/Prime. asmx vBe ks

PrimeService
The following operations are supported. For a formal defintion, please review the Service Description
« Getrimeafter

o GetPrimesafter

This web service is using http://tempuri.org/ as its default namespace.
Recommendation: Change the default namespace before the web service is made public.

Each web service needs a uniqus namespace to identify it so that client applications can distinguish it from other
services on the web. hitp://tempuri.org/ is available for web services that ars under develapment, but
published web services should use & mare permanent namespace.

Your web service should be identified by 3 namespace that you control. For example, you could use your
company's Internet domain name as part of the namespace. Although many web service namespaces look like
URLS, they need not point to an actual resource on the web. (Web service namespaces are URI.)

For ASP.NET Web Services, the default namespace can be changed using the WebService attribute's
Namespace praperty. The WebService attribute is an attribute applied to the class that contains the web service
methads. Below is a code example that sets the namespace to "hitp://micrasaft.com/webservices,"

cr

[VebService (Namespace="http:/ /microsoft . con/vebservices/ ")]
public class NyVebService (

// implementation
)

Visuel Basic T
<WebService (Namespace:="http://microsott . con/ vehservices/")> Puplic Class Hylieh
" inplenencacion
End Class
For more datals on XML namespaces, ses the WAC recommendation on Namespaces in XML
For more datals on WSDL, see the WSDL Specification
For more datals on URIs, ses REC 2396
)
ST

Figure 4‑3 Browser-testing XML Web Services

Notice that right at the top of the page are two links describing the methods that the web-service expose. If you were to click on one, ASP.Net will create an HTML response with UI allowing you to execute the method.

[image: image4.png]2 PrimeService Web Service - Microsoft Internet Explorer

Ele Edt View Favortes Toos Help

Qs - © - 1 B] Dsower Forovonss @ rwas

Addhess | €] http: flocalhostServices/Prime/Prime. asmx?op=GetPrimes ¥ Go

PrimeService

Click here for a complete lst of operations.

GetPrimesAfter
Test

To test, cick the 'Invoke' button,

Parameter Value

after.

count:

CreT

Figure 4‑4 Browser-testing XML Web Service Methods

The screen shot shown in Figure 4‑4 shows the GetPrimesAfter() method (defined in the .asmx file from Figure 4‑2). The HTML page actually allows you to enter values for the parameters, and invoke the method. If you were to do thise, the ASP.Net dll will return the SOAP response to you. The following screen shows the response I got when I asked for the 10 prime numbers after 1,000,000.

[image: image5.png]2 http://localhost/Services/Prime/Prime.asmx/GetPrim. ..
Ble et Favorkes Tools telp

Dot - © - R B @] Psenn P roas

adress |] https flocalhostServicesPrimePrime.asmxjGeter v | EJ Go Links >

<?uml version="1.0" encoding="utf-8" 7>
- <ArrayofDecimal

srilns: xsi="http:/ /veveve.w3.0rg/2001/XMLSchema
-instance”
srilns: xsd="http:/ /vevew.w3.0rg/2001/XMLSchema"
smins="http:/ /tempuri.org/">
<decimal>1000008</decimal>
<decimal>1000083</decimal>
<decimal>1000087</decimal>
<decimal>1000089</decimal>
<decimal>1000081</decimal>
<decimal>1000099</decimal>
<decimal>1000117</decimal>
<decimal>1000121</decimal>
<decimal>1000133</decimal>
<decimal>1000151</decimal>

</ArrayofDecimal>

]
@00 G iocaiirare:

Figure 4‑5 Browser-testing SOAP Response

You can use the browser testing feature of ASP.Net not only to test a service, but also to find out useful information about it, such as its schema and WSDL, its origins, etc. In fact, if you browse to www.XMethods.com, you can use the browser-testing feature on many of the Web services that were implemented using the .NET Framework. If you attempt to browse to the URI of a Web service hosted on a platform other than the .NET Framework you will most likely get nothing but a SOAP response indicating an error, or if you are lucky the service might send back its WSDL document.

Exercise 4‑1 Browser-test Prime.asmx

1. Copy the contents of Figure 4‑2 into an .asmx file, and copy the file to a location in your file system that is under a virtual root.
Example:
c:\InetPub\wwwroot\Prime

2. Point your browser at the URL for the .asmx file.
Example:
http://localhost/Prime/Prime.asmx

3. Now use the web-page that is automatically generated by ASP.Net to test the Web service.
Example: Click on GetPrimeAfter() and enter 1000 and press the Invoke button. A SOAP response should appear in a second window encoding the value 1009 in XML.

4.4. Advanced Web Services

It’s possible to modify and customize your XML Web service objects in a number of ways. Some reasons that you might need to adjust the default behavior are as follows.

· Change the default SOAP marshalling for methods.

· Make use if cached responses.

· Maintain application state.

· Enforce security via authentication.

· Support custom SOAP Headers

There are other customizations and advanced techniques that you can exploit with Web services. In fact, there are too many possibilities to discuss in this tutorial. It is good that the flexibility of the infrastructure is so advanced, and rather than focus on all of the things you can do with Web service, I will give you an idea of where to look when you need to implement a certain feature.

Most of the times that you need to make your Web service object behave in an advanced way you will do so by using one or more of the following features.

· Changes to ASP.Net markup – Remember that your .ASMX files are initially parsed by the ASP.Net engine in much the same way the web form (.ASPX) files are parsed. You can include ASP.Net markup (recognizable by their <% and %> tag specifiers) to adjust the results of the initial parsing. For example, the <% @WebService %> directive supports attributes that allow you to specify an assembly containing service code (code behind) as well as other things, such as the managed language used in the .ASMX file.

· Web service custom attributes – Custom attributes can be used in a variety of ways to adjust the behavior of your Web services. For example, the WebMethodAttribute type has properties that allow you to specify features such as response caching, session management (rarely used with Web services) and transaction processing. The System.Web.Services namespace also defines the WebServiceAttribute which can be used to adjust certain behaviors of your service type. The System.Web.Services.Protocols namespace defines a number of custom attribute types for use with your Web service objects. These types can be used to significantly adjust the way your objects methods are represented in terms of SOAP. This is useful, because SOAP is a very flexible standard, and you may need to define a Web service that matches an existing WSDL document. When you use attributes to annotate the metadata for your objects, ASP.Net detects the additional metadata. ASP.Net then uses the facts found in the custom metadata to adjust its behavior from the default.

· Properties on the WebService base class – The methods defined by the WebService base class are not terribly interesting. However, it does have some useful public properties. These properties include objects that allow you to make use of application or session state for your methods, user authentication, etc. Although it is not necessary to derive your Web service object from the WebService base class, many real-world services need the features of the base class.

· XML Serializer custom attributes – The Framework Class Library defines a class called the XMLSerializer. The XMLSerializer translates XML into simple class data and vice-versa. The XMLSerializer is convenient for reading and writing XML documents in any managed application, not just Web services. However, it may not surprise you to learn that the marshalling functionality of Web services is largely implemented via the XMLSerializer type. The XMLSerializer supports literally dozens of custom attributes (defined in the System.Xml.Serialization namespace) that allow you to adjust the way your managed types are represented in XML. This becomes useful when your Web services begin using parameters and return values that are structured types rather than primitives such as String and Int32.

You know enough about Web services now to make some interesting services of your own.

Exercise 4‑2 Extra Credit: Optimize Prime.asmx

1. The Prime.asmx Web service does not provide a completely useless service. Large prime numbers are useful in a number of scientific and security related algorithms, and it is admittedly silly that more than one system should ever re-invent the wheel be calculating a prime number that has already been calculated.

2. The implementation in Prime.asmx, however, is fairly primitive. It might be an interesting exercise to modify the code to support the following optimizations.

a. Use UInt32 calculations until the processing overflows the data type, then use UInt64 data, and finally use Decimal. (Decimal objects can be used to represents values up to 79,228,162,514,264,337,593,543,950,335, but they do not process as quickly as the integer types)
Hint: The interface or exposed methods to the Web service should not have to change, just their implementations.

b. Use ADO.Net to persist prime numbers in a data base. Optimize the service to only calculate responses when the calculation will take less time than a database lookup.

c. Use a background process (or a completely different machine) to constantly populate the data base with prime numbers.

d. If the database infrastructure is in place, you may consider throwing an exception when a prime or block of primes is requested that cannot be fulfilled immediately. The text of the exception could even suggest a date when that prime number may be available.

4.5. XML Web Service Clients

XML Web service client applications are actually very easy to create because of the help that the WSDL.exe tool provides by creating a SoapHttpClientProtocol-derived proxy for the service. However, there are still some concepts and ideas about the clients that are worth mentioning here.

· Web service clients can be any kind of managed application. This includes console applications, windows forms applications, web forms applications and Web service applications. Any managed code can act as a client to a Web service.

· You can use the SoapHttpClientProtocol base class to adjust the client behavior. For example, you can set credentials, change the URL, set proxy settings, and add custom SOAP headers using the base class of your proxy class.

· The WSDL.exe tool creates proxy methods for all exposed web methods. In addition to the tool creates Begin*() and End*() methods for calling Web service methods asynchronously. For more information on the asynchronous programming model, see the tutorial in this series titled Advanced Looks at the .NET Framework Class Library.

· Calls to Web service proxy methods may throw the SoapException. In fact, the SOAP protocol supports exceptions, and any exception thrown from a Web service (including the message text for the exception) is marshaled to the client as a SOAP exception. The client proxy classes marshal SOAP exceptions into the SoapException type, and then rethrow them on the client side. Your clients should be capable of catching this exception.

· Finally, remember that you can use managed code to create a Web service client for any Web service that uses SOAP, regardless of the platform on which that service was implemented.

For an example of a reasonably advanced XML Web service client, see the TerraView.cs project that comes with this tutorial. TerraView.cs is a windows forms application that consumes the terra-server Web service published at http://terraservice.net/TerraService.asmx. (For more information on the terra server project go to www.TerraServer.net).

5. XML Web Services

XML Web Services are an exciting technology that has the potential to significantly change our industry. I can imagine everything from email to movies and music being served via services. And as hand-held and embedded devices become more capable, they will also be able to play as clients (and servers) in the equation.

I look forward to the day when my email is available on the computer on the stair-climber at the gym. Or maybe my movie or music collection will be available on the computer at my seat in an airplane (not yet, but soon!). These types of features, where your data follows you and your software gives you whatever slices of data you are interested in at that moment, will become possible as it becomes easier to share information. XML Web services provide a ground-breaking blend of flexibility and model simplicity for programmatically sharing information.

Finally, the .NET Framework is a first class platform on which to build and consume Web services. Enjoy the .NET Framework!

Content Developed by Jason Clark
