

Introduction

Images may suffer from the following degradations:

SYMBOL 183 \f "Symbol" \s 10 \h
Poor contrast due to poor illumination or finite

sensitivity of the imaging device.

SYMBOL 183 \f "Symbol" \s 10 \h
Electronic sensor noise or atmospheric disturbances

leading to broad band noise.

SYMBOL 183 \f "Symbol" \s 10 \h
Aliasing effects due to inadequate sampling.

SYMBOL 183 \f "Symbol" \s 10 \h
Finite aperture effects or motion leading to spatial

blurring.

We will consider simple algorithms for image enhancement based on lookup tables and image restoration based on filtering which can improve the visual quality of images with these degradations.

In an image of low contrast, the image has grey levels concentrated in a narrow band.

Consider the grey level histogram

 of such an image where :

We want to 'stretch' the histogram to the full (0-255) dynamic range.
The simplest technique is to use a sigmoid lookup table to map input to output grey levels :

sigmoid function :

 controls the position of maximum slope

 controls the slope

Problem - we need to determine the optimum sigmoid parameters

 and

 for each image.

A better method would be to determine the best mapping function

 from the image data.
A general histogram stretching algorithm

We require a transformation

 such that from any histogram

 :

Constraints :

1.

(for an N x N , 8 bit image)

2.

g(i) is an ordered transformation - the grey levels in the output histogram should not 'cross over'.

The required transformation is based on the cumulative histogram

.

If the required histogram is flat, the required cumulative histogram will be a ramp :

h(i)

 i

 H(i)

 i
Let the actual histogram and cumulative histogram be

 and

.

Let the desired histogram and desired cumulative histogram be

 and

.

Let the transformation be

.

For an N x N, 8-bit image :

Key point :

 is an ordered transformation.

Therefore :

Thus :

Worked example

32 x 32 bit image with grey levels quantised to 3 bits.

	

	

	

	

	

	0
	197
	197
	1.35(1
	-

	1
	256
	453
	3.10(3
	197

	2
	212
	665
	4.55(5
	-

	3
	164
	829
	5.67(6
	256

	4
	82
	911
	6.23(6
	-

	5
	62
	993
	6.65(7
	212

	6
	31
	1004
	6.86(7
	246

	7
	20
	1024
	7.0(7
	113

Examples on real images

[image: image1.png]

[image: image2.png]

Histogram before stretching :

Histogram after stretching :

[image: image3.png]

[image: image4.png]

Histogram before stretching

Histogram after stretching

Introduction

Simple image operators can be classified as 'pointwise' or 'neighbourhood' (filtering) operators.

[image: image5.wmf](x,y)

(x,y)

Input image

Output image

(x,y)

(x,y)

pointwise

transformation

neighbourhood

transformation

Input image

Output image

Co-ordinates

 refer to the discrete image grid. Thus

.

Types of filtering operations

The output g(x,y) can be a linear or non-linear function of the set of input pixel grey levels

.

[image: image6.wmf](x,y)

(x,y)

Input image f(x,y)

Output image g(x,y)

(x-1,y-1)

(x+1,y+1)

Examples

This defines a linear filter with the

 being the filter coefficients.

This defines a median filter which is useful for removing some types of noise from images.

Suppose we wanted to create an output image consisting of the local 3x3 arithmetic means of an input image (ignoring floating point SYMBOL 174 \f "Symbol" byte rounding).

We can define a 3x3 'convolution mask' H :

Place the central point of the mask at pixel (x,y).

Multiply and add the overlapping mask and image points

to produce the output image value at pixel (x,y).

Mathematically, we can write this operation as follows :

The first equation generally describes convolution of an input image

 with a filter

.

Example

An image corrupted with additive broad-band noise can be smoothed with a Gaussian low-pass filter.

where

 determines the width of the filter and hence the amount of smoothing.

Original image.

Noise corrupted image

Gaussian filtered

Gaussian filtered

Convolution in the frequency domain

An

 image can be represented in the spatial domain as

or in the frequency domain by

which is the discrete Fourier transform (DFT) of

.

The inverse DFT is given by :

is the grey level of the image at position

.

 is the frequency content of the image at spatial frequency position

.

Smooth regions of the image contribute low frequency components to

. Abrupt transitions in grey level (lines and edges) contribute high frequency components to

.

[image: image7.wmf]x

y

f(x,y)

(0.0)

(N-1,N-1)

v

u

(0,0)

(N-1,N-1)

F(u,v)

DFT

IDFT

Example

Input image

.
[image: image8.png]

Log magnitude of the DFT

.

(The origin of the

 axis is the centre of the image.)

Computation of the DFT

An

 point DFT would require

 floating point multiplications per output point. Since there are

 output points , the computational complexity of the DFT is

.

- many hours on a workstation!

In the 1960's the FFT algorithm was developed. An

 point DFT only requires

 multiplications using the FFT algorithm.

- only a few minutes on a workstation.

Convolution theorem

Suppose we have an

 image

 to be convolved with an

convolution mask

 to produce an output

.

This is a slightly different definition of the convolution. The mask

 is shifted and inverted before overlapping and summing.

Let

 be DFT’s of

.

Convolution theorem.

This provides the 'filtering' interpretation of convolution.

We can demonstrate this filtering interpretation by performing a simple operation on the DFT of

. Suppose we set all values in

 to zero for spatial frequencies

 such that

 where

 defines the bandwidth of the filter.

This is equivalent to multiplying

 by

 where :

Only high frequency regions, corresponding to edge regions in the original image, remain. We could get the same result by convolving the image with

 which, in this case, would be an edge detector (see later.)

Implementation

 are

 DFT’s of

.

Usually

. In this case the

filter mask is 'zero-padded' out to

.

The output image

 is of size

. The filter mask ‘wraps around’ truncating

 to an

 image?

[image: image9.wmf]Filter mask h(x,y)

Input image f(x,y)

zero padding

x

x

x

x

x

x

DFT

DFT

H(u,v)

F(u,v)

H(u,v)F(u,v)

IDFT

f(x,y) * h(x,y)

x

x

x

x

x

x

x

x

x

x

[image: image10.wmf]Input image f(x,y)

Output image g(x,y)

(x,y)

Filter mask h(x,y)

(x',y')

x' = x modulo N

y' = y modulo N

Computational complexity of convolution (Spatial domain v frequency domain)

 image is to be convolved with an

 filter. Spatial domain convolution requires

 floating point multiplications per output point or

 in total.

Frequency domain implementation requires

 floating point multiplications (

DFTs +

 IDFT +

 multiplications of the DFTs).

Example

Spatial domain implementation requires

 floating point multiplications.

Frequency domain implementation requires

 floating point multiplications.

Spatial domain implementation requires

floating point multiplications.

Frequency domain implementation requires

 floating point multiplications.

For smaller mask sizes, it would appear that spatial or frequency domain implementations have about the same computational complexity. However, we can speed up the frequency domain implementation significantly by splitting the image into blocks and filtering the blocks separately in the frequency domain.

Examples of simple filters

We can consider some simple filters in the spatial and frequency domains.
1. Smoothing (low-pass) filter

These masks are useful for smoothing images corrupted by additive broad band noise.
Spatial domain

Frequency domain

This has the frequency characteristic of a low-pass (smoothing filter) but notice the ‘ringing’ at high frequencies. This explains why more rounded filters (such as the Gaussian) are preferred.

2. Simple edge detector

H responds to horizontal edges

- positive response SYMBOL 222 \f "Symbol" left to right edge

- negative response SYMBOL 222 \f "Symbol"right to left edge

We can evaluate the DFT of the 1-D edge detector

 very easily.

The magnitude of the response is thus :

The frequency response has a band-pass characteristic. Thus the filter responds to areas in the image containing medium frequencies such as edges and texture and has zero response to areas containing a slowly varying greylevel.
CCHCS M.Sc- Computer Vision

Image enhancement and filtering

Image enhancement using histogram equalisation

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

�Image filtering

Linear filtering and convolution

� EMBED Equation.2 ���

� EMBED Equation.2 ���

DFT

IDFT

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

� EMBED Equation.2 ���

_960794420.unknown

_960813190.unknown

_960880310.unknown

_960895809.unknown

_960896239.doc
�

�

_961223901.unknown

_961224580.unknown

_961224582.unknown

_961224583.unknown

_961224581.unknown

_961224578.unknown

_961224579.unknown

_961224576.unknown

_961224577.unknown

_961224575.unknown

_961223695.unknown

_961223743.unknown

_960897119.unknown

_960897228.unknown

_960895972.unknown

_960896015.unknown

_960896032.unknown

_960896010.unknown

_960895877.unknown

_960895920.unknown

_960895848.unknown

_960880704.unknown

_960881257.unknown

_960891362.unknown

_960891915.unknown

_960892170.unknown

_960892639.unknown

_960892647.unknown

_960892290

_960892169.unknown

_960891477.unknown

_960891047.unknown

_960891079.unknown

_960891154.unknown

_960891198.unknown

_960891048.unknown

_960882325

_960883352.unknown

_960891046.unknown

_960882190.unknown

_960882191.unknown

_960881780.unknown

_960880898.unknown

_960881175.unknown

_960881209.unknown

_960880935.unknown

_960880974.unknown

_960880853.unknown

_960880873.unknown

_960880746.unknown

_960880824.unknown

_960880420.unknown

_960880638.unknown

_960880683.unknown

_960880631.unknown

_960880366.unknown

_960880398.unknown

_960880342.unknown

_960815752.unknown

_960880196.unknown

_960880261.unknown

_960880295.unknown

_960880219.unknown

_960816360.unknown

_960879341.unknown

_960880195.unknown

_960816570

_960816332.unknown

_960813297.unknown

_960814663.unknown

_960815681.unknown

_960813450.unknown

_960813691.unknown

_960814575.unknown

_960813497.unknown

_960813432.unknown

_960813245.unknown

_960813263.unknown

_960813216.unknown

_960812557.unknown

_960812782.unknown

_960813009.unknown

_960813087.unknown

_960813180.unknown

_960813044.unknown

_960812830.unknown

_960812866.unknown

_960812804.unknown

_960812655.unknown

_960812710.unknown

_960812775.unknown

_960812702.unknown

_960812602.unknown

_960812634.unknown

_960812596.unknown

_960811998.unknown

_960812254.unknown

_960812465.unknown

_960812501.unknown

_960812338.unknown

_960812143.unknown

_960812217.unknown

_960812224.unknown

_960812211.unknown

_960812121.unknown

_960796143.unknown

_960811709.unknown

_960811900.unknown

_960796188.unknown

_960795905.unknown

_960796009.unknown

_960795361

_960724300.unknown

_960793172.unknown

_960794295.unknown

_960794339.unknown

_960794391.unknown

_960794319.unknown

_960793298.unknown

_960793388.unknown

_960793289.unknown

_960725109.unknown

_960792628

_960793076.unknown

_960793092.unknown

_960793091.unknown

_960793074.unknown

_960792789.unknown

_960725261.unknown

_960725426

_960792496.unknown

_960725232.unknown

_960724460.unknown

_960724511.unknown

_960725084.unknown

_960724672.unknown

_960724486.unknown

_960724372.unknown

_960709697.unknown

_960724209.unknown

_960724241.unknown

_960724262.unknown

_960724228.unknown

_960710560.unknown

_960711481

_960724017

_960724187.unknown

_960723970

_960711402

_960710234.unknown

_960710297.unknown

_960709780.unknown

_960709817.unknown

_960709421.unknown

_960709469.unknown

_960709565.unknown

_960709443.unknown

_959420648.unknown

_959420681.unknown

_959420139.unknown

