


Introduction

Images may suffer from the following degradations:

SYMBOL 183 \f "Symbol" \s 10 \h
Poor contrast due to poor illumination or finite  

sensitivity of the imaging device.


SYMBOL 183 \f "Symbol" \s 10 \h
Electronic sensor noise or atmospheric disturbances


leading to broad band noise.


SYMBOL 183 \f "Symbol" \s 10 \h
Aliasing effects due to inadequate sampling.


SYMBOL 183 \f "Symbol" \s 10 \h
Finite aperture effects or motion leading to spatial 


blurring.

We will consider simple algorithms for image enhancement based on lookup tables and image restoration based on filtering  which can improve the visual quality of images with these degradations.


In an image of low contrast, the image has grey levels concentrated in a narrow band.

Consider the grey level histogram 

 of such an image where :




              



                                                                                                        


We want to 'stretch' the histogram to the full (0-255) dynamic range.
The simplest technique is to use a sigmoid lookup table to map input to output grey levels :






 

                                                                            






sigmoid function :




 controls the position of maximum slope




 controls the slope

Problem - we need to determine the optimum sigmoid parameters  

 and 

 for each image. 

A better method would be to determine the best mapping function 

 from the image data.
A general histogram stretching algorithm

We require a transformation 

 such that from any histogram 

 :




Constraints :

1.




(for an N x N , 8 bit image)

2.




g(i) is an ordered transformation - the grey levels in the output histogram should not 'cross over'.

The required transformation is based on the cumulative histogram 

.







   


If the required histogram is flat, the required cumulative histogram will be a ramp :



h(i)

                                                                                i

                 H(i)

                                                                                i  
Let the actual histogram and cumulative histogram be 

 and 

.

Let the desired histogram and desired cumulative histogram be 

 and 

.

Let the transformation be 

.

For an N x N, 8-bit image :









Key point :




 is an ordered transformation.





Therefore :






Thus :




Worked example

32 x 32 bit image with grey levels quantised to 3 bits.
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Examples on real images
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Histogram before stretching :




Histogram after stretching :
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Histogram before stretching



Histogram after stretching





Introduction

Simple image operators can be classified as 'pointwise' or 'neighbourhood' (filtering) operators.
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Co-ordinates 

 refer to the discrete image grid. Thus 

.

Types of filtering operations

The output g(x,y) can be a linear or non-linear function of the set of input pixel grey levels 

.
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Examples




This defines a linear filter with the 

 being the filter coefficients.




This defines a median filter which is useful for removing some types of noise from images.


Suppose we wanted to create an output image consisting of the local 3x3 arithmetic means of an input image (ignoring floating point SYMBOL 174 \f "Symbol" byte rounding).






We can define a 3x3 'convolution mask'  H :







Place the central point of the mask at pixel (x,y).

Multiply and add the overlapping mask and image points

to produce the output image value at pixel (x,y).




Mathematically, we can write this operation as follows :





The first equation generally describes convolution of an input image 

 with a filter 

.

Example

An image corrupted with additive broad-band noise can be smoothed with a Gaussian low-pass filter.




where 

 determines the width of the filter and hence the amount of smoothing.




Original image.



Noise corrupted image





Gaussian filtered 



Gaussian filtered 







Convolution in the frequency domain

An 

 image can be represented in the spatial domain as 

or in the frequency domain by 

which is the discrete Fourier transform (DFT) of 

.







The inverse DFT is given by :










is the grey level of the image at position 

. 

 is the frequency content of the image at spatial frequency position 

.

Smooth regions of the image contribute low frequency components to 

. Abrupt transitions in grey level (lines and edges) contribute high frequency components to 

.
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Example

Input image 

.
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Log magnitude of the DFT 

.


(The origin of the 

 axis is the centre of the image.)

Computation of the DFT

An 

 point DFT would require 

 floating point multiplications per output point. Since there are 

 output points , the computational complexity of the DFT is 

. 








- many hours on a workstation!

In the 1960's the FFT algorithm was developed. An 

 point DFT only requires 

 multiplications using the FFT algorithm.








- only a few minutes on a workstation.

Convolution theorem

Suppose we have an 

 image 

 to be convolved with an 

convolution mask 

 to produce an output 

.





This is a slightly different definition of the convolution. The mask 

 is shifted and inverted before overlapping and summing.

Let 

 be  DFT’s of 

.


Convolution theorem.

This provides the 'filtering' interpretation of convolution.

We can demonstrate this filtering interpretation by performing a simple operation on the DFT of 

. Suppose we set all values in 

 to zero for spatial frequencies 

 such that 

 where 

 defines the bandwidth of the filter.

This is equivalent to multiplying 

 by 

 where :




















Only high frequency regions, corresponding to edge regions in the original image, remain. We could get the same result by convolving the image with 

 which, in this case, would be an edge detector (see later.)




Implementation



 are 

 DFT’s of 

.

Usually 

. In this case  the 

filter mask is 'zero-padded' out to 

.

The output image 

 is of size 

. The filter mask ‘wraps around’ truncating 

 to an 

 image?
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Computational complexity of convolution (Spatial domain v frequency domain)



 image  is to be convolved with an 

 filter. Spatial domain convolution requires 

 floating point multiplications per output point or 

 in total.

Frequency domain implementation requires   

 floating point  multiplications (

DFTs + 

 IDFT + 

 multiplications of the DFTs).

Example




Spatial domain implementation requires 

 floating point multiplications.

Frequency domain implementation requires 

 floating  point multiplications.




Spatial domain implementation requires 

floating point multiplications.

Frequency domain implementation requires 

 floating  point multiplications.

For smaller mask sizes, it would appear that spatial or frequency domain implementations have about the same computational complexity. However, we can speed up the frequency domain implementation significantly by splitting the image into blocks and filtering the blocks separately in the frequency domain.

Examples of simple filters

We can consider some simple filters in the spatial and frequency domains.
1. Smoothing (low-pass) filter




These masks are useful for smoothing images corrupted by additive broad band noise.
Spatial domain

Frequency domain



This has the frequency characteristic of a low-pass (smoothing filter) but notice the ‘ringing’ at high frequencies. This explains why more rounded filters (such as the Gaussian) are preferred.

2. Simple edge detector







H responds to horizontal edges


- positive response SYMBOL 222 \f "Symbol" left to right edge


- negative response SYMBOL 222 \f "Symbol"right to left edge







We can evaluate the DFT of the 1-D edge detector 

 very easily.




The magnitude of the response is thus :









The frequency response has a band-pass characteristic. Thus the filter responds to areas in the image containing medium frequencies such as edges and texture and has zero response to areas containing a slowly varying greylevel.
CCHCS M.Sc- Computer Vision





Image enhancement and filtering








Image enhancement using histogram equalisation
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�Image filtering





Linear filtering and convolution
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DFT





IDFT
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