
Introduction

We have seen that, in order to compute disparity in a pair of stereo images, we need to determine the local shift (disparity) of one image with respect to the other image.

In order to perform the matching which allows us to compute the disparity, we have 2 problems to solve :

· Which points to select for matching?

- we require distinct ‘feature points’

· How do we model feature points in 1 image with feature points in the second image?
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There are some fairly obvious guidelines in solving both problems.

Feature points must be :

· Local (extended line segments are no good, we require local disparity)

· Distinct (a lot ‘different’ from neighbouring points)

· Invariant (to rotation, scale, illumination)

The matching process must be :

· Local (thus limiting the search area)

· Consistent (leading to ‘smooth’ disparity estimates)

Approaches to feature point selection

Previous approaches to feature point selection have been :

· Moravec interest operator

- this is based on thresholding local greylevel squared differences

· Symmetric features 

- circular features, spirals

· Line segment endpoints

· Corner points

A feature extraction algorithm based on corner point detection is described in Haralick & Shapiro, pp. 334 which allows corner point locations to be accurately estimated along with the covariance matrix of the location estimate. The approach uses least-squares estimation and leads to an identical covariance matrix as was obtained for the optical flow estimation algorithm!


Assume that the corner point lies at location 

. We require an estimate 

 of the location together with a covariance matrix which we obtain by considering the intersection of line segments with an 

 point window spanning the corner point location.

Suppose we observe 2 ‘strong’ edges in the window. These edges will meet at the corner point estimate 

 (unless they are parallel).


What if we observe 3 strong edges?





The location estimate 

 minimises the sum of perpendicular distances to each line segment.





Thus, in this case 

 is selected to minimise  

.

How do we characterise an edge segment?

Each edge passes through some point 

 and has a gradient 

 at that point. The edge segment is characterised by the perpendicular distance to the origin 

 and the gradient vector direction 

.











Finally, we can quantify the certainty with which we believe an edge to be present passing through 

 by the gradient vector squared-magnitude 

.

In order to establish a mathematical model of the corner location, we assume that the perpendicular distance of the edge segment 

 is modelled as a random variable 

with variance 

.








Assuming our observations are the quantities 

 for each location 

 in the 

-point window, we can employ a weighted least-squares procedure to estimate 

:






where 

.

Defining :







These equations straightforwardly lead to a matrix-vector equation :




Subsituting :












We can estimate 

 by :





The covariance matrix is then given by :




This is the same covariance matrix we obtained for the optical flow estimation algorithm.

Window selection and confidence measure for the corner location estimate

How do we know our window contains a corner point? We require a confidence estimate based on the covariance matrix 

.

As in the case of the optical flow estimate, we focus on the eigenvalues 

 of 

 and define a confidence ellipse :




We require 2 criteria to be fulfilled in order to accept the corner point estimate :

· The maximum eigenvalue 

 should the smaller than a threshold value

· The confidence ellipse shall not be too elongated implying that the corner location estimate precision is much greater in one direction than the other

In order to satisfy the second criterion, we can quantify  the circularity of the confidence ellipse by the form factor 

 :




Its easy to check that 

 with 

 for an elongated ellipse and 

 for a circular ellipse. Thus we can threshold the value of 

in order to decide whether to accept the corner location estimate or not.


The general problem is to pair each corner point estimate 
[image: image1.wmf])

ˆ

,

ˆ

(

i

i

c

c

y

x

in one stereo image with a corresponding estimate 
[image: image2.wmf])

ˆ

,

ˆ

(

'

'

j

j

c

c

y

x

 in the other stereo image. The disparity estimate is then the displacement vector 
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We can represent each possible match 

 for feature points 

 by a bipartite graph with each graph node being a feature point. The correspondence matching problem is then to prune the graph so that one node in the left image is only matched with one node in the right image.


                L                R                     L                  R

There are a number of feature correspondence algorithms that have been developed ranging from relaxation labelling type algorithms to neural network techniques. Typically these algorithms work on the basis of :

· Feature similarity

· Smoothness of the underlying disparity field

We can define feature point 

, corresponding to node 

in the left stereo image. In our case, 

 is a corner feature with image location 

.

We need to match 

 with some feature 

 in the right stereo image. Such a match would produce a disparity estimate 

 at position 

.





We will outline a matching algorithm based on relaxation labelling which makes the following assumptions :

· We can define a similarity function 

 between matching feature points 

 and 

. Matching feature points would be expected to have a large value of 

. One possibility might be :






where 

 is a constant and 

 is the normalised sum-of-squared  greylevel  differences between pixels in the 

-point window centred on the two feature points.

· Disparity values for neighbouring feature points are similar. This is based on the fact that most object surfaces are smooth and large jumps in the depth values at neighbouring points on the object surface, corresponding to large jumps in disparity values at neighbouring feature points, are unlikely.

Our relaxation labelling algorithm is based on the probability 

 that feature point 

 is matched to feature point 

 resulting in a disparity value of 

.

We can initialise this probability using our similarity function :






We next compute the increment in 

 by considering the contribution from all of the neighbouring feature points of 

 which, themselves, have disparities close to 

 :








Finally, we update the our probabilities according to :






This is an iterative algorithm,  whereby all feature points are updated simultaneously. The algorithm converges to a state where none of the probabilities associated with each feature point doesn’t change above some pre-defined threshold value. At this point the matches are defined such that :



 

Example

Stereo pair (left and right images) generated by a ray tracing program. 
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A selection of successfully matched corner features (using the above corner detection and matching algorithms) and the final image disparity map which is proportional to the depth at each image point.
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Introduction
This area of computer vision research attempts to reconstruct the structure of the imaged 3D environment and the 3D motion of objects in the scene from optical flow measurements made on a sequence of images.

Applications include autonomous vehicle navigation and robot assembly. Typically a video camera (or more than one camera for stereo measurements) are attached to a mobile robot.  As the robot moves, it can build up a 3D model of the objects in its environment.
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The fundamental relation between the optical flow vector at position 

 in the image plane, 

, and the relative motion of the point on an object surface projected to 

 can easily be derived using the equations for perspective projection.

We assume that the object has a rigid body translational motion of 

 relative to a camera centred co-ordinate system 

.


The equations for perspective projection are :






We can differentiate this equation with respect to 

:




where 

.

Substituting in the perspective projection equations, this simplifies to :




We can invert this equation by solving for 

 :






This consists of a component parallel to the image plane and an unobservable component along the line of sight :




Focus of expansion

From the expression for the optical flow, we can determine a simple structure for the flow vectors in an image corresponding to a rigid body translation :




where 

 is called the focus of expansion (FOE). For 

 towards the camera (negative), the flow vectors point away from the FOE (expansion) and for 

 away from the camera, the flow vectors point towards the FOE (contraction).






Example
Diverging tree test sequence (40 frame sequence). The first and last frame in the sequence are shown and the optical flow showing the flow vectors pointing towards the FOE indicating an expanding flow field.
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What 3D information does the FOE provide?




Thus, the direction of translational motion 

 can be determined by the FOE position.










We can also determine the time to impact from the optical flow measurements close to the FOE. 









 is the time to impact, an important quantity for both mobile robots and biological vision systems!










The position of the FOE and the time to impact can be found using the least-squares technique based on measurements of the optical flow 

 at a number of image points 

 (see Haralick & Shapiro, pp. 191).


The structure from motion problem can be stated as follows :

Given an observed optical flow field 

 measured at 

 image locations 

 which are the projected points of 

 points 

 on a rigid body surface moving with velocity 

, then determine, to a multiplicative scale constant, the positions 

 and velocity 

 from the flow field.

Note that this is a rather incomplete statement of the full problem since, in most camera systems attached to mobile robots, the camera can pan and tilt inducing an angular velocity about the camera axes. This significantly complicates the solution.


















An elegant solution exists for the simple case 

 (Haralick & Shapiro, pp. 188-191). The general case is more complex, and a lot of research is still going on investigating this general problem and the stability of the algorithms developed.

The algorithm starting point is the optical flow equation :






Thus, since 

 is the vector sum of 

 and 

 then the vector product of these 2 vectors is orthogonal to 

:


But :






Thus :






This equation applies to all points 

. Obviously a trivial solution to this equation would be 

.  Also if some non-zero vector 

is a solution then so is the vector 

for any scalar constant 

. This confirms that we cannot determine the absolute magnitude of the velocity vector, we can only determine it to a multiplicative scale constant.

We want to solve the above equation, in a least-squares sense, for all points 

, subject to the condition that :






This constrains the squared-magnitude of the velocity vector to be some arbitrary value 

.

We can rewrite the above orthogonality condition for all points 

 in matrix-vector notation :






where :






The problem is thus stated as :





This is a classic problem in optimization theory and the solution is that the optimum value 

 is given by the eigenvector of 

 corresponding to the minimum eigenvalue. 

 is given by :




Once we have determined our estimate 

, we can then compute the depths 

 of our scene points since, from our original optical flow equation :









We can compute the least-squares estimate of each 

from the above 2 equations as :
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The solution is :
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Finally, the scene co-ordinates 

 can be found by applying the perspective projection equations.


Introduction
The problem of structure from stereo is to reconstruct the co-ordinates of the 3D scene points from the disparity measurements. For the simple case of the cameras in normal position, we can derive a relationship between the scene point depth and the disparity using simple geometry :




Take 

 to be the origin of the 

 co-ordinate system. Using similar triangles :














 is known as the disparity between the projections of the same point in the 2 images. By measuring the disparity of corresponding points (conjugate points), we can infer the depths of the scene point (given knowledge of the camera focal length 

and baseline 

) and hence build up a depth map of the object surface.

We can also derive this relationship using simple vector algebra. Relative to the origin 

 of our co-ordinate system, the left and right camera centres are at 

, 

 where 

is the camera baseline. For some general scene point 

 with left and right image projections 

 and 

 :
















Because the cameras are in normal position, the 

 disparity 

 is zero.

Once the scene point depth is known, the 

 and 

co-ordinates of the scene point can be found using the perspective projection equations.

When the cameras are in some general orientation with respect to each other, the situation is a little more complex and we have to use epipolar geometry in order to reconstruct our scene points. 

Epipolar geometry

Epipolar geometry reduces the 2D image search space for matching feature points to a 1D search space along the epipolar line. The epipolar line 

 in the right image plane is determined from the projection of a point 

 in the left image plane. There is a corresponding epipolar line 

 corresponding to the projection of 

 in the right image plane.

The key to understanding epipolar geometry is to recognise that 

 lie in a plane (the epipolar plane). The epipolar line 

 is the intersection of the epipolar plane with the right image plane.  The corresponding point in the right image plane to point 

 in the left image plane can be the projection of any point along the ray 

, thus defining the epipolar line 

.





Given a feature point with position vector 

 in the right hand image plane, the epipolar line 

 in the left hand image plane can easily be found.

Any vector 

, for 

 projects to the epipolar line. With respect to the co-ordinate system centred on the left hand camera, 

 becomes 

 where 

 is a rotation matrix aligning the left and right camera co-ordinate systems. The rotation matrix and the baseline vector  

 can be determined using a camera calibration algorithm.

Thus for any value 

, the corresponding position  

 on the epipolar line can be found using perspective projection. By varying 

, the epipolar line is swept out. Of course, only two values of 

 are required to determine the line.

For cameras not in alignment, we can define a surface of zero disparity relative the vergence angle 

 which is the angle that the cameras’ optical axes make with each other :










For vergence angles 

 , disparities are defined as negative (ie. objects lie outside the zero disparity surface). For vergence angles 

, disparities are defined as positive (ie. objects lie inside the zero disparity surface.)

A particularly simple case arises when the image planes are parallel and perpendicular to the optical axis, the epipolar lines are just the image rows.



We have looked at how we can interpret 2D information, specifically optical flow and disparity measurements in order to determine 3D motion and structure information about the imaged scene.

We have described algorithms for :

· Optical flow estimation

· Feature corner point location estimation

· Correspondence matching for feature points

· 3D velocity and structure estimation from optical flow

Feature matching for stereo image analysis





An algorithm for corner point estimation
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Correspondence matching for disparity computation
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Motion and 3D structure from optical flow
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An algorithm for determining structure from motion
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Structure from stereo
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