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1. Introduction

The wavelet transform applied to a whole variety of different signals as emerged as a new tool in signal processing. This series of lectures describes the application of wavelets to image compression. Wavelets are able to model characteristics of signals not previously modelled by existing statistical approaches. In particular it is able to model scale dependence which is present in most if not all real-life signals such as speech or image signals. In the next section we will introduce what we mean by scale dependence in images. Subsequent sections will look at how we can easily construct wavelet transforms of signals without having to resort to complicated mathematics such as Fourier analysis and which gives a good insight into what wavelets are. Also we will look at why wavelets are good for image compression. We will consider this from both a qualitative and quantitative viewpoint, the latter by looking at the statistical dependencies present in the wavelet coefficients. We will then look at two state-of-the-art image compression methods based on wavelets which exploit these statistical dependencies in two completely different ways but which both lead to excellent performance and, in particular, easily out-performing standard JPEG.

1.1 Scale dependence in images

A key feature in the design of good data compression algorithms is that they capture the correlations in the data. For example, in an image, there is a high correlation between a pixel and its neighbours, something which is exploited in simple predictive coding algorithms. We call this correlation spatial dependence since there is a statistical dependence between pixels which are spatially close to each other. However, there is a more subtle dependence in signals and that is one across different scales. This is something that is brought out by the wavelet decomposition of a signal. As an example, figure 1a below shows an image of an outdoor scene which is 512x512 pixels. Figures 1b shows this image displayed at a coarser scale (in other words, the same image is displayed on a smaller grid, in this case 256x256 pixels). Obviously, because we are displaying the same image on a smaller grid, many of the finer details in figure 1a are lost in figure 1b but we can still easily recognise the scene in figure 1a from that in figure 1b. The image displayed in figure 1b was produced from that displayed in figure 1a by sub-sampling the pixels after applying a simple low-pass filter in order to avoid aliasing effects. We can obviously apply this process to the image in figure 1b and the result is figure 1c which is the same (recognisable) scene but displayed at an even coarser scale. Obviously, we could repeat this process and create a pyramid of images where each level of the pyramid represents the image at a different scale.

The term scale dependence means that there is a correlation between features at one scale (in other words, at one level  in the pyramid) and features at another scale at the  same  location (taking  into  account the different sampling grid sizes). The word feature is used loosely in this context (although it will have a more precise meaning in the context of the wavelet transform).
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For example, the presence of an edge at one scale means that there is an increased probability of an edge being at the corresponding position in coarser scale images. Figures 2a and 2b demonstrate this point by displaying edge maps computed from figures 1a and 1b respectively. 
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By examining figures 2a and 2b closely, we can see that this edge correlation does indeed exist. However, it is not 100% correlation. Thus an edge at a fine scale might appear at a coarser scale, but it might not. This is important from a compression view-point. Efficient compression methods are all about making good predictions. If we apply compression to the coarser scale image first (figure 2b) and then predict the presence of all edge features in figure 2b at corresponding locations in figure 2a, then this will be a fairly good approximation. All that remains is to add the extra detail (in other words those edge features that are in the fine scale image but not the coarser scale image) to get the fine scale compressed image. This is the basis (very crudely!) of wavelet compression algorithms – they predict what is at the finer scale from information computed at the coarser scale on a reduced grid size and encode the extra added detail (so called inter-scale prediction). Of course, compressions algorithms shouldn’t ignore the spatial correlation of neighbouring pixels and wavelet compression algorithms combine this inter-scale prediction with intra-scale prediction – in other words prediction information within a single image scale.

2. Pain-free wavelet construction

Most expositions on wavelets use the classical Fourier domain framework where the advantages of a logarithmic tessellation of the time-frequency plane as produced by a wavelet decomposition over regular tessellation as produced by the windowed Fourier transform are described. However, it is possible to describe wavelets from a signal (or image) approximation viewpoint and remain entirely in the spatial domain. The mathematics are considerably simpler and some new insights are produced. 

2.1 A simple example – the Haar wavelet revisited

We will use the notation 
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. We can propose a simple approximation to 
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 which comprises replacing every even sample with an average. In this case we produce a new sequence 
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2.1

We can regard 
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 as being a coarser scale version of 
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 (rather like the image in figure 1b is a coarser scale version of the image in figure 1a). We can also define a detail signal 
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 which is the extra information required to go back from the coarser to finer scale representation of the signal :
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2.2
Its very easy to show that we can easily recover the original signal from 
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2.3
These two equations show how the even and odd samples of 
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 are recovered respectively.

Obviously if the signal 
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 has high correlation between neighbouring samples, the detail signal 
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 will be small. In this case, the coarser scale representation will be a good approximation to the fine scale representation. Also, we can keep on repeating this decomposition. We can produce a coarser scale representation 
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 and an associated detail signal 
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. In the limit, we will end up with n detail signals 
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which is the average of all of the samples of the original signals (in other words, it is the DC component of the frequency decomposition of the signal). This will give us a set of signals which is referred to as a wavelet pyramid. Figure 3 shows this decomposition process in the form of a flow graph.
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By using the inverse transform as expressed in equations 2.3, we can recover the original sequence 
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and the set of detail signals 
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. This is shown in figure 4.
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Note that the total number of coefficients after the decomposition is 1 for 
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which is exactly the number of samples of the original signal. Note also that the computational cost of the Haar transform is only proportional to 
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complexity). This is much more efficient than other linear transforms which typically have an 
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 matrix by an N-vector.) Finally, the above structure can be generalised to any wavelet if we regard each step as a simple linear filtering operation so, in the case of the Haar transform, the filter coefficients are 
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2.2 Re-implementation of the Haar wavelet – lifting

In this section, we look at a new way of implementing the Haar transform. The novelty lies in separating the computations into 3 different steps – the split, predict and update steps. The idea is motivated from a data compression viewpoint in that we are trying to compute 
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 is minimized. The different mechanisms for approximating 
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 lead to different wavelets. As a nice by-product of this approach, the inverse wavelet transform becomes trivial – it is simply the same computations in reverse!

We can summarise the different stages – split, predict, update as follows :
· Split

This step is trivial. It simply separates out the samples of 
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 representing the even samples. Obviously both of these groups have 
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· Predict

This step attempts to predict the odd sample set 
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 from the even sample set. The detail signal produced is then just the difference between the predicted signal  and the true signal. We can represent this process in general as :
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In the case of the Haar wavelet, the prediction operator P(.) is the identity operator so, in effect, the predictor for the odd sample 
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.Obviously, the quality of this prediction is dependent on the local correlation in the signal. In this case, then, the detail signal becomes :
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2.6
· Update

As stated above, 
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 is the average (or DC) value of the original signal. We can generalise this a bit and state that all coarse representations of signal 
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2.7
which is the average value of coarse representation  signal 
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, in independent of j.  This can be assured by introducing an update step which computes the next coarse level signal representation. For the Haar wavelet, it is given by :
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From equation 2.8, its very easy to show :
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2.9
and hence that the average value of the signal is preserved. Obviously, for any coarse scale approximation to signal  
[image: image72.wmf]n

s

, it is reasonable at the very least that the average value of the approximation should be preserved. We could require that other properties of 
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 should also be preserved which, indeed they can be in more complex wavelets. In general, an update operator U is defined as follows :
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2.10
There are several advantages of this implementation of the Haar wavelet (equations 2.6, 2.8) over the previous implementation (equations 2.1, 2.2). In the original case, the computations couldn’t be carried out in place because the original fine scale signal is needed in both equations 2.1 and 2.2. Hence an extra memory location is required to store the sample 
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 in equation 2.8. No extra temporary memory buffer is required. Also, its easy to see how to compute the inverse transform from equations 2.6 and 2.8 – we simply implement the equations in the reverse order. Thus from equation 2.8 we get :
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and, from equation 2.6 we get :
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which can again be implemented in place. These two equations determine the even and odd samples at the next finest scale which can then be merged.

Figure 5 shows the implementation of the forward transform where general predict and update operators are shown instead of the ones specifically for the Haar transform. The input to figure 5 is the signal 
[image: image87.wmf]j

s

 and the output is the detail signal 
[image: image88.wmf]1

-

j

d

 and approximation signal 
[image: image89.wmf]1

-

j

s

 at the next coarsest scale which can be input to another lifting stage producing 
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 and so on. In this way a set of detail signals can be produced along with the DC signal 
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. Figure 6 shows how these lift  stages can be cascaded in this way.

[image: image210.wmf]j

s


[image: image211.wmf]1

-

j

o

[image: image212.wmf]n

s

[image: image213.wmf]1

-

n

d


[image: image214.wmf]1

-

n

s

[image: image215.wmf]2

-

n

s

[image: image216.wmf]2

-

n

d

[image: image217.wmf]1

s


[image: image218.wmf]0

d


[image: image219.wmf]0

s

[image: image220.wmf]0

s

[image: image221.wmf]0

d


[image: image222.wmf]1

d


[image: image223.wmf]1

d


[image: image224.wmf]1

s

[image: image225.wmf]2

d

[image: image226.wmf]1

d


[image: image227.wmf]2

s


[image: image228.wmf]1

-

n

s

[image: image229.wmf]1

-

n

d

[image: image230.wmf]1

d


[image: image231.wmf]n

s

[image: image232.wmf]l

n

s

2

,


[image: image233.wmf]1

2

,

+

l

n

s


[image: image234.wmf]2

2

,

+

l

n

s

[image: image235.wmf]l

n

s

2

,


[image: image236.wmf]l

n

d

,

1

-

[image: image237.wmf]2

2

,

+

l

n

s

[image: image238.wmf]l

n

d

,

1

-

[image: image239.wmf]l

n

s

,

1

-

[image: image240.wmf]1

,

1

+

-

l

n

s

[image: image241.wmf]n

n

i

,

[image: image242.wmf]1

,

-

n

n

d

[image: image243.wmf]1

,

-

n

n

i

[image: image244.wmf]1

,

-

n

n

i

[image: image245.wmf]1

,

-

n

n

d

[image: image246.wmf]1

,

1

-

-

n

n

i

[image: image247.wmf]1

1

,

1

-

-

n

n

d

[image: image248.wmf]3

1

,

1

-

-

n

n

d

[image: image249.wmf]2

1

,

1

-

-

n

n

d

[image: image250.wmf])

(

X

P

[image: image251.wmf])

)

(

|

(

S

X

P

S

X

P

Î

Î

[image: image252.wmf])

)

(

|

(

L

X

P

L

X

P

Î

Î

[image: image253.wmf]2

/

#

N

S

[image: image254.wmf]2

/

#

N

L

[image: image255.wmf]{

}

)

|

(

S

X

S

X

P

n

Î

Î

[image: image256.wmf]{

}

)

|

(

L

X

L

X

P

n

Î

Î

[image: image257.wmf]2

/

#

N

S


The inverse transform is shown in figure 7 where it can be seen that it is just the reverse of figure 5. The merge block simply merges odd and even samples into the final output signal 
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 in an obvious way (the opposite to split). Its straight forward to show that figure 7 is indeed the inverse operation to figure 5. Also, as in the case of the forward transform, these operations can be cascaded so that the output of one stage 
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. The cascade operation for the inverse decomposition is shown in figure 8.
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In summary, the advantages of the above scheme over the traditional ‘filtering’ interpretation of the wavelet transform are :

· Inverse transform

The inverse transform is immediately obvious in this implementation and that is simply to run the code backwards. This is irrespective of the form of the predict and update operators which, may for example, contain non-linearities such as float->integer truncation used to compute the integer wavelet transform used in lossless compression. In the filtering interpretation of the wavelet transform, the inverse transform can typically only be found with the help of Fourier techniques.

· Generality

The design of the transform is performed without reference to particular forms for the predict and update operators. Thus more sophisticated forms for these operators can be used leading to other types of wavelets as well as operators containing non-linearities such as float->integer truncation as mentioned above or operators which can handle signal samples which are not evenly spaced. 

2.3 The linear-spline wavelet transform

We can build more sophisticated wavelets (and wavelets which are better suited to signal compression) through the use of different predict and/or update operators. Indeed, the Haar transform uses a predictor which simply takes the preceding even samples as a predictor for the odd samples. Obviously, the prediction is perfect if the original signal is a constant value. For the update step, the Haar wavelet preserves the average signal value (or, the zero-th order moment). Obviously, most real signals are not simply constant valued and it is desirable to have predictors which can exploit coherence beyond simply constant or piecewise constant values as well as being able to preserve higher than zero-th order moments.

In this section we will build a predict and update operators where the predictor will be exact if the signal is linear and the update will preserve average and first-order moments. This actually turns out to be relatively simple and will result in a wavelet which does a better job at building approximations over coarser scales and hence has less energy in the detail signals than the Haar wavelet and, as we shall see in a later section, is better suited to compression applications.

The key step is to let the predictor for an odd sample 
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. The detail coefficient is then given by :
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The idea behind this prediction is shown in figure 9 where it should be clear that using this first-order prediction will result in a lower prediction error (and hence a detail signal with smaller energy) than the zero-th order prediction used by the Haar transform. As mentioned above, if the original signal was a linear ramp, then the detail signal would be zero.

As in the case of the Haar wavelet, the linear wavelet must assure that the average value of the signal is preserved :


[image: image101.wmf]å

å

-

=

-

=

-

-

=

1

2

0

1

2

0

,

,

1

1

2

/

1

n

n

l

l

l

n

l

n

s

s



2.14

As for the Haar wavelet, even samples are updated using previously computed detail signal samples. However, in this case, both the current and previous detail signal sample are used to update 
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In equation 2.15, A is a constant which we need to determine in order to maintain the signal average. In order to find A, we simply compute the signal average :
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If we choose 
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Also it can be shown that the first-order moment is preserved :
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In figure 10, the computation of the linear wavelet transform is shown graphically where again it can be seen that all of the computations can be carried out in place.









The inverse is easy to compute since, from equation 2.15, with 
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to recover the even samples and, from equation 2.13 :
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to recover the odd samples. Finally, it is fairly easy to cast the equations for the wavelet transform into the original filtering interpretation by substituting equation 2.13 into equation 2.15 :
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In this case, the filter coefficients are 
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. However, if the filter is applied directly, the transform cannot be carried out in-place and in order to find the inverse transform, Fourier techniques need to be used.

2.4 The wavelet transform applied to images

So far, all of our development has been for 1D signals. It is important to see how we can apply a wavelet decomposition to 2D signals, namely images. This turns out to be straightforward as we simply apply the 1D transform to all of the rows in the image followed by all of the columns in the image. Let us define 
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as an image consisting of 
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The wavelet transform for this image proceeds by applying the 1D transform to each row of the image. Thus, in total, 
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 1D transforms are applied where each is implemented using the lifting scheme. This results in 2 images each of size 
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 pixels since the size of each row has now been halved. The first image consists of 
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 coarse scale approximations of each of the rows and the second image consists of  
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 detail signals of each of the rows. Next, the 1D transform is applied to the columns of both image. In this case 
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 forward transforms are applied for each image, again using the lifting scheme. This results finally in 4 images of each size 
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 along with 3 detail images denoted as 
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Figure 11 illustrates the procedure for computing this forward 2D wavelet transform. Obviously, we can repeat this process on the coarse scale image approximation 
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 to produce a coarser scale approximation 
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 and 3 more detail signals 
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and so on. Notice that, after each transform stage, there are the same number of pixels (
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) as were in the original image. 

In terms of the traditional filtering interpretation of the wavelet transform, the approximation signal is a low pass filtering  of the original  signal  and  the  detail signal is a high pass filtering. From figure 11, detail signal 
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 is produced by lowpass filtering the rows of 
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and high pass filtering the columns of 
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which is equivalent to a lowpass filtering horizontally followed by highpass filtering vertically. 
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 is produced by highpass filtering horizontally and lowpass filtering vertically and 
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 is produced by highpass filtering horizontally and vertically. 
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 are known as the LL, LH, HL and HH sub-bands for this reason.












3 Application to compression

3.1 Introduction

In this section we will show how we can apply the techniques we have learnt in the previous section to image compression. We will show why it is more efficient to compress the wavelet coefficients after a wavelet transform as well as how this is done by looking at a couple of state-of-the-art compression techniques which handsomely outperform the standard JPEG method. 

To begin with it is worth looking at the images produced by a wavelet transform. Figure 12a shows an original image, the famous ‘Lena’ image much used by image compression researchers in order to evaluate their algorithm. This image is 512x512 pixels in size. Figure 12b is the result of applying the 2D Haar transform on this image and shows the coarse scale approximation image and the 3 detail images (only the magnitudes of the detail images are shown as they can be positive or negative values). Figure 12c shows the result of the 2D linear spline wavelet transform for comparison. In figure 12d, a 2 level wavelet decomposition using the Haar wavelet is shown where a wavelet decomposition of the approximation image is applied. This results in 1  approximation image and 6 detail images but notice that all of these images fit exactly into the original 512x512 pixel container.

From a compression viewpoint, the striking feature of the 2 wavelet transforms is that all three of the detail images are mainly dark in the smooth image regions with higher frequency regions (such as edges and textured regions) highlighted. In terms of the distribution of greylevels in the detail images, the greylevel of a pixel in the detail images would have a high probability of having a small magnitude (close to zero) than a pixel in the original image (this ignores any inter or intra scale dependencies for the moment). Hence we can postulate that the zero-th order entropy of the wavelet decomposition image (the coarse scale approximation image and the 3 detail images) will be lower than the zero-th order entropy of the original image and hence, using entropy coding (Huffman or Arithmetic coding) should result in significant compression if applied to the wavelet image. Figure 13 shows the greylevel histograms of the original image along with that of Haar wavelet image and shows that the histogram of the wavelet image is much more compact than that of the original image particularly around zero indicating a lower entropy value. 

A careful comparison of figures 12b and 12c  shows that the linear wavelet does a better job in approximating the  original  image as the 3 detail  images are  clearly   darker and contain less energy than for the Haar wavelet. Remember, the detail signal is essentially the difference between the original and its coarse scale approximation. The better the approximation, the lower the energy in the detail image and the more efficiently the detail images can be compressed. Table 1 lists the entropies of the original, the Haar wavelet and the linear spline wavelet where this is confirmed. The entropies are shown for both a 1 and 2-level wavelet decomposition where it can be seen that the entropy is further reduced for the 2 level wavelet pyramid. This can be continued and, typically, for image compression applications, 5 or 6 level wavelet pyramids are used. Beyond this point, there is little decrease in entropy since the coarse scale approximation image occupies a smaller and smaller proportion of the wavelet image size and hence approximating it further makes little difference (for example, for a 5-level wavelet decomposition, the coarse level approximation image is 16x16 pixels for a 512x512 original image size).
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3.2 Inter and intra-scale dependencies

The above results are for zero-th order entropy only – in other words, we still have  not     taken    into    account     inter-scale   or     intra-scale    dependencies   
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of the coefficients in the wavelet images. These dependencies are exploited in state-of-the-art compression algorithms However, being able to explicitly express these dependencies algebraically is not easy. Usually papers attempt to do this by expressing the mutual information between spatially neighbouring or parent-child (this is explained below) wavelet coefficients This can lead to interesting results although the mathematics is tricky and often only simplified cases can be considered. We will consider a simplified scenario where we classify wavelet coefficients into 2 groups – those that are large and those that are small. This sounds too simple but is actually quite relevant when it comes to wavelet compression because modern algorithms essentially try to put more effort into coding large valued coefficients at the expense of ignoring small valued coefficients. This of course begs the question that, somehow, we have to be able to also encode the position of groups of large or small valued coefficients which is where the dependencies (inter or intra-scale) allow us to do this quite efficiently.

Before we look at this simple model, we need to be clear about just what dependencies we are trying to model. Figure 14 shows a wavelet decomposition into 2 levels – the coarse approximation image is the small square at the top left of the figure and the 6 detail images are shown. A wavelet coefficient in one of the detail images is shown as X. We are considering dependencies between this coefficient and it 8 neighbouring coefficients in the same detail image. This is intra-scale dependency. We are also considering the dependence between X and its parent 
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Let us denote sets S and L as sets wavelet coefficients with ‘small’ and ‘large’ absolute values. We will classify wavelet coefficients into these two classes by comparing their absolute values with a threshold. 
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Let us focus on the inter-scale dependency first. A wavelet coefficient X is a member of either set S or set L.  Its parent coefficient is also a member of set S or set L. We want to determine if there is any dependency on the memberships of these two coefficients. In other words, if the parent of  X is in set S, is it more likely that X will be in set S also? Thus we want to determine the following probabilities :
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Without any dependencies we would expect that :
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3.2

We can take simple measurements from a wavelet image to see if any dependencies exist on the membership of sets S and L. We estimate the probabilities in equations 3.1 and 3.2 from the histogram of the wavelet coefficients. In order to determine the set membership of a wavelet coefficient, the histogram shown in figure 13 for a 1-level Haar decomposition shows that there is a large cluster around zero and a much broader cluster starting at a value of around 5. Interestingly, this 2-cluster model of wavelet coefficient distribution has been developed and used recently in areas such as image filtering as well as compression. Thus, for this image, we will choose a threshold of 5 in order to partition the coefficients into the two sets. We then simply measure the numbers of coefficients that are in the respective sets to estimate the probabilities 
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. Table 2 lists these values for the 2-level Haar decomposition for the Lena image. Also table 2 lists the values of 
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From table 2, we see that, ignoring inter-scale dependencies, the probability of a coefficient being small is 0.781 but if we take into account whether its parent coefficient is small, this increases to 0.886. The probability of a coefficient being large if we ignore inter-scale dependencies is 0.219 but if we take into account whether its parent is large, this increases to 0.529. 

From an image compression viewpoint, when encoding a wavelet coefficient, we can usefully take into account the state of a parent wavelet coefficient (in other words whether it is small or large). Since most (if not all) wavelet-based image compression algorithms encode coarser scales before finer scales (we will discuss more about this in the next section), the state of the parent of a wavelet coefficient is known to the decoder as well as the encoder and so this does not have to be transmitted.

For the case of intra-frame dependency, the situation is a bit more complicated as a wavelet coefficient at any level has 8 spatial neighbours as shown in figure 15. Hence there are 
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 possible states of the surrounding 8 neighbours which makes characterizing the dependence unmanageable. A simple solution is to characterize the state of the neighbourhood in terms of the average (absolute) value of their wavelet coefficient values.



Let 
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3.3

The state of the neighbourhood is then this value thresholded :
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3.4

We can then apply a similar technique as in the inter-scale dependency and measure the probabilities 
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 in order to compare them with 
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In this case, the improvement in the prediction probability when intra-scale dependencies are considered is even greater than in the case of inter-scale probabilities. Most state-of-the-art wavelet compression algorithms use a combination of inter and intra scale prediction in determining the significance of a  wavelet coefficient (in other words whether its absolute value is greater than a threshold) which in turn determines whether it should be coded or not. It should also be mentioned that the neighbourhood shown in figure 15 can not, in fact be used in predicting whether the coefficient at the centre of the neighbourhood is significant or not. This is because, in coding wavelet coefficients, a raster-scanning of each wavelet level is used which means coefficients are scanned in a top-left -> bottom-right order. Thus, all of the coefficients in the neighbourhood will not have been coded before the centre coefficient X is coded and the decoder will have no way computing the prediction probabilities (
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). Hence a causal neighbourhood  is used in determining these probabilities. Figure 16 shows a causal neighbourhood where, in this case, all of the coefficients in the neighbourhood are coded before X.



4 Example image compression algorithms

4.1 Introduction

In this section we will look at two recent image compression algorithms which demonstrate the power of wavelet-based compression. The first is known as the SPIHT algorithm (Set Partitioning in Hierarchical Trees) [1] which was published in the mid-90’s and the second is the SLCCA algorithm (Significance Linked Connected Component Analysis)  [2] published in 1999. 

Whilst there are many more examples of image compression algorithms based on wavelets, these two algorithms were chosen because they are competitive with any other algorithm and because they handle inter-scale dependencies in two contrasting ways. The SPIHT algorithm focuses on the set S and tries to code as many of the small valued coefficients as possible using a tree structure known as a zerotree. The  SLCCA algorithm focuses on the set L and tries to code the (much smaller) set of large valued coefficients in clusters. The common feature of both methods is that they only transmit the values of the coefficients in the set L since the small value coefficients can be effectively set to zero with little impact on the final reconstructed image. 

We will only look at the main features of each algorithm. For more details you are directed to the references. 

4.2 The SPIHT algorithm

The key idea behind the SPIHT algorithm is that wavelet coefficients with large magnitude have a larger influence on the reconstructed image than wavelet coefficients with smaller magnitude. Hence we should use our allocated bit budget in transmitting these coefficients first. Thus the SPIHT algorithm transmits wavelet coefficients in partial order. Imagine that the wavelet coefficients are placed in order according to the bit-plane of their most significant bit (msb) as shown in figure 17. 





In this case, coefficients 1 and 2 would be transmitted first followed by coefficients 3 and 4 followed by coefficients 5,6 and 7  etc. Thus the SPIHT algorithm has two components :

· A sorting pass

Here, sorting information is transmitted on the basis of the most significant bit-plane. 

· A refinement pass

Here bits in bit-planes lower than the most significant bit plane are transmitted. 

The algorithm scans each wavelet level and establishes the maximum (absolute) valued wavelet coefficient and hence the maximum bit plane. It sets a bit plane counter to this value and all coefficients with this bit set are called significant coefficients for this pass and all coefficients with this bit set to zero are called insignificant for this pass. This significance/insignificance information is transmitted to the decoder. The bit plane counter is then decremented by one and new significance/insignificance information transmitted. Also refinement bits are transmitted for coefficients that were deemed significant during previous sorting passes.

The neat trick with the SPIHT coder is the way that the positions of large groups of insignificant coefficients (for the current pass) can be transmitted with a single symbol using a zerotree. Exploiting inter-scale dependency once again, there is a high probability of a tree of insignificant coefficients being formed. To re-emphasise the definition of significance, this means that all of the coefficients in the tree have a magnitude which is less then 
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 where n is the value of the bit plane counter. Clearly the larger the value of n, the more likely it is that these zerotrees are formed. Figure 18 shows a zerotree which has a root within one of the wavelet detail images and includes all of the descendents of this root.



In this case, a single zerotree symbol is transmitted to the decoder which represents the significance of 21 coefficients. 

The other neat idea behind SPIHT is to take a tree of wavelet coefficients and, if the tree is not a zerotree, partition the tree so that there is a possibility that one of the sub-trees is a zerotree and hence can be efficiently transmitted. This idea is shown in figure 19 where the top right hand (greyed) block of coefficients is significant and hence will prevent the whole tree from being a zerotree. However, this tree can be partitioned such that there are 3 smaller zerotrees starting at the second coarsest pyramid level. The algorithm does this in such a way that any partitioning of coefficients sets done at the encoder can be tracked at the decoder so that no additional information other than the significance of each coefficient need be transmitted. 

More details about the algorithm can be found in [1].

One big advantage with the SPIHT algorithm (apart from its excellent compression performance and its computational efficiency) is that it produces an embedded bitstream. What this means is that the decoder can stop decoding the bitstream produced by the encoder at any point and the image can be reconstructed. This has obvious practical advantages over non-embedded bitstreams (as for example produced by JPEG) which need the complete bitstream before any image can be reconstructed. For example, if the communication channel capacity is exceeded which may halt transmission of any more data, the image can still be reconstructed albeit at reduced quality. This idea is shown in figure 20. The reason that the SPIHT algorithm produces an embedded bitstream is that once a wavelet coefficient is significant (with respect to the current bit plane counter), its most significant bit is known (along with its sign bit which is also transmitted with its significance value). Further refinement bits are added later. Thus it is always possible to determine the wavelet coefficients to some level of accuracy at any point in the bitstream and hence reconstruct the image through an inverse wavelet transform.








4.3 The SLCCA algorithm

In contrast to the SPIHT algorithm, the SLCCA algorithm works by efficiently encoding the positions of clusters of large valued wavelet coefficients. An overview of the encoding stage of this algorithm is shown in figure 20. 



The key feature is the computation and transmission of clusters of significant coefficients after quantisation. A coefficient is defined as being significant if, after dividing by a quantisation step parameter qstep followed by integer truncation, it has an absolute value greater than zero. (The same result could, of course, be achieved by simple thresholding). The novel feature of the SLCCA algorithm is the way it clusters and transmits significant wavelet coefficients. A cluster of  significant coefficients is defined using an image processing operator known as a dilation operator. This essentially defines coefficients to be in the same cluster if they are within a specified distance (say 2 pixels) of each other. Firstly, small clusters of significant wavelet (for example with less than 3 coefficients in the cluster) coefficients are removed before transmitting as they would be inefficient to transmit. Then each cluster is scanned with the dilation operator and the cluster transmitted. The neat thing about this technique is that both the significance and position of the coefficients in the cluster are transmitted at the same time and the cluster can be reconstructed at the decoder. See [2] for  details. Figure 21a shows the significant coefficients after quantisation and figure 21b shows them after clustering. 

The SLCCA algorithm exploits inter-scale dependency using significance linking. Without significance linking, in order to encode each cluster, a seed has to be transmitted which comprises the coordinates of one of the coefficients making up this cluster. The cluster is then grown recursively from the seed. However, if at least one coefficient in the child cluster has a significant parent then transmitting a significance link symbol when the parent coefficient is encoded makes it a very efficient way of seeding the child cluster. The idea is shown in figure 22. The child cluster is automatically seeded through the use of the significance link which saves a lot of bits as long as there is inter-scale dependency in the sense that a cluster at one scale implies the likelihood of a child cluster at the next finer scale.

The final stage of the SLCCA algorithm is the encoding of the magnitudes of  the significant coefficients using bit-plane encoding rather similar to the technique used in the SPIHT algorithm. The number of bit planes is determined by the maximum absolute value of all of the significant coefficients and then the most significant bit plane is encoded first followed by the second most significant bit-plane etc. There is considerable scope here for the use of entropy coding since, for the first few bit planes, most of the symbols transmitted will be zero. Also, inter and intra scale prediction can be used here to predict the symbol (one or zero). Finally the sign (positive or negative) of each coefficient must be transmitted also.
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4.4 Algorithm performance

In this section, we will compare the performance of the different algorithms we have considered. We will look at a comparison with the JPEG image compression algorithm as well as looking as at the effect of using different wavelet decompositions.

In assessing algorithm performance, the simplest method is to compute the mean-squared-error (mse) between the original and decoded image. Thus, if 
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N pixel image is given by :
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4.1

It is normal practice to convert this to a peak-signal-to-noise (PSNR) measure in dB’s as given by :
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4.2

with the assumption that the image is quantised to 8 bits of greylevel and hence has a maximum value of 255. In standard photographic type images such as Lena, a 40dB distortion is imperceptible and significantly noticeable coding artefacts only start appearing around 30dB. 

There is, of course, significant debate in the image compression community about whether PSNR is a suitable measure of an algorthm’s performance and whether more subjective measures should be used or, at least measures more in tune with human visual perception. It is, without doubt, true that subjective measures are a useful measure but they are time consuming to determine (typically requiring a number of subjects in controlled viewing environments). More quantitative measures that take account of human visual perception have also been developed but they are generally more complex to compute than PSNR. Typically they involve weighting the squared difference in equation 4.1 such that less weight is given to regions of high frequency where differences are less noticeable (typically the highly textured areas in an image) and giving more weight to low frequency regions (typically the smooth background regions of the image) where differences are more noticeable. To date no standard measure of this type has been agreed on and, in fact, the simple PSNR measure does have reasonable correlation with subjective measures over a range of images and compression ratios.

Figure 23 compares the performance of the SPIHT and SLCCA algorithms on the Lena image. Both implementations use a 6-level wavelet decomposition and use the Daubechies 9-7 wavelet which is a more complex wavelet than the Haar or linear spline wavelets we have considered but can still be implemented using the lifting scheme. As can be seen, the PSNR’s of the two algorithms are virtually indistinguishable. It is worth mentioning though that the SPIHT algorithm has a number of practical advantages over the SLCCA algorithm. Firstly it doesn’t require entropy coding based on the arithmetic codec which makes it faster and less prone to channel errors. Also, as mentioned above, it produces an embedded bit stream although the SLCCA algorithm can also produce an embedded bit stream for the magnitude coefficient bits (but not for the significance map). Finally, for optimum performance, the algorithm has to search for the optimum quantisation step size for a given bit rate which also makes it much less efficient than SPIHT. A lower quantisation step size produces more significant coefficients which can’t then be refined to the same ‘depth’ (number of significant bits) as when a larger quantisation step size is used. Also shown is the comparative performance of the standard JPEG codec which is handsomely outperformed by both wavelet codecs as can be seen from figure 23. 

Figure 24 shows the effect on the performance of the SPIHT codec if different wavelets are used. (The results using the SLCCA codec would be very similar). It can be seen that the performance using the Haar wavelet is even worse than JPEG but the linear spline and Daubechies 9-7 wavelets produce quite similar PSNR curves. There has been a lot of research on trying to find the best wavelets for image compression, or even wavelets which are able to adapt themselves to the image. However, it is fairly clear that there is a law of diminishing returns with this approach since, the difference between using a sophisticated wavelet such as Daubechies 9-7 and a relatively simple one such as a linear spline is quite small in terms of overall compression performance. A much better line of research is to investigate more efficient ways of quantising the wavelet coefficients. Sophisticated approaches such as using vector quantisers have yielded impressive results but at a cost of significant increases in complexity. 
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Figure 25 shows a visual comparison between JPEG and SPIHT at a low bit-rate (0.2 bits/pixel). (If a high bit rate were chosen, say around 1 bit/pixel, no differences would be discernible due to the loss in resolution after printing the images). The difference in visual quality between these two images is fairly clear as are the ‘blocking’ artifacts of JPEG which occur because JPEG encodes 8x8 pixel blocks independently which be seen even more clearly in figure 26 where the region containing the left eye is expanded. Wavelet-based methods introduce no such artifacts and degrade gracefully at low bit-rates. 
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