EE2E1 Lab Intro

ELECTRONIC, ELECTRICAL AND COMPUTER ENGINEERING

[image: image1.jpg]pER| 4p
ARDU ALTA

[image: image2.png]UNIVERSITYOF
BIRMINGHAM

EE2E1 2014/2015
 Introduction to the Java Programming Laboratories

Dr M. Spann

Overview

This document gives you an introduction to the Java programming laboratory exercises designed to support the Java programming lectures as part of the EE2E module. It covers the overall structure of the Java programming laboratories, assessment and information on writing formal lab reports.

Lab Structure

The Java laboratories will run in both semester 1 and semester 2. The programming exercises will be as follows :

Semester 1

· Lab intro. (1 week), non-assessed
· Classes (2 weeks), assessed
· Inheritance (2 weeks), assessed
Semester 2

· Mini project involving graphics and multi-threading (all semester), assessed
It is important to mention that the programming exercises will be scheduled such that a topic is covered in lectures before it is met in the lab. In this way, the practical programming exercises reinforce the lecture material.

As you can see, the first laboratory is a gentle introductory laboratory designed to get you used to using simple Java program development tools. It is non-assessed but it is important that you attend this lab and use the time wisely.

The semester 1 exercises will be assessed based on your submitted code which I will run to assess the program’s functionality. It is important that when you submit your code, it compiles and runs error free! Check carefully that you are submitting the most recent version of your code. Instructions about code submission will be provided prior to the submission deadline.

The semester 2 exercise is assessed in the same way as semester 1 exercises but in addition, you will be expected to submit a formal report. Details about the structure of the report are given below. Note that in all cases you submit 1 piece of work per lab pair. Do not submit 2 independent pieces of work if you are working with a lab partner.
Assessment

The assessment of all of the programming exercises accounts for 85% of the overall assessment of the EE2E1 module which is itself 50% of the EE2E module.

Preparatory Work

Each lab sheet will have a preparatory work section. In our experience, problems encountered by students in programming laboratories are usually through a lack of adequate preparation. It is in your interest to carry out the preparatory work before you go into the lab. This may involve revising/checking out a few concepts in the lecture notes or a textbook, producing (with your lab partner) some outline designs for the program, looking into existing classes and how you plan to use them etc. For the assessed labs in semester 1, there are 2 lab sessions allocated. This should be sufficient time to type in, compile, debug and test your programs. However, as mentioned above, at the very least you should some up with outline designs for your program outside of the set lab periods.

Program Design

This course is primarily to teach you the basics of Java programming. The course runs in parallel with the Object Oriented Design course which teaches you about formal OO design processes and how to describe them using the Universal Modelling Language (UML).

You may use UML to express your program designs and, for the semester 2 programs, as you get more expert in UML this may be your preferred choice. However, you may also use simple pseudo-code to outline the design of a class method and javadoc (see appendix) to document the classes and methods you design.

Formal Reports

You should follow the guidelines that you learnt during your first year programming course for writing formal reports for this course. Briefly, you should consider the following headings within your report (and this would be a bare minimum!):

· Objectives

· Specification

· Design

Design considerations including constraints

Class relationships (either informally or formal UML spec.)

Design specification of class methods (pseudo-code if you wish)

· Program Structure

List of classes and their methods including parameters and return values of each method

Relationship between classes

· Implementation

Major data structures used

User interface considerations where appropriate

Algorithms used where appropriate

· Testing

Overall testing strategy

Test results, expected/actual outputs

· Conclusions

Success/failure of the assignment

Future improvements where appropriate

· Code listing, including comments

You might want to consider further headings or sub-divide the above headings, the above are just guidelines.

The appropriate length of the report obviously reflects the complexity of the design but (excluding code listings) a rule of thumb for the complexity of the programs you will need to write as part of the EE2E course is that they shouldn’t exceed 10 pages and preferably considerably shorter.

Plagiarism
The definition of plagiarism for our purposes is using either the whole or part of someone else’s code and attributing its authorship to oneself. Note also that this includes code downloaded from the Internet. If you do use code either authored by someone else or from the Internet as part of your submitted program, this must be made clear in the program itself, typically by some comment in the code. You must under no circumstances try to pass it off as your own code.

If plagiarism is discovered within a group of students (in other words they have all submitted similar programs, or parts of their programs are similar), everyone in the group will get zero marks for the report and that includes the genuine authors of the code. It is fairly obvious therefore that it is in your interests not to show your code to anyone but your lab partner or one of the laboratory assistants or to myself. It also goes without saying not to email your code to anyone or leave program listings lying around.

It is better to submit a half finished program than to plagiarise someone else’s program. You will always get some credit for attempting the program yourself and submitting your own code even if the program doesn’t work.

You have been warned!

Appendix

javadoc
This is a utility for parsing source files for classes and methods and comments. It produces an html file which produces professional looking documentation easily. Check out Sun’s javadoc web page at http://java.sun.com/j2se/javadoc/writingdoccomments/index.html which shows you how to comment your source code for the javadoc utility to work. The basics are pretty straightforward and are outlined below.

All javadoc comments are formed from 2 sections, a description and zero or more tags, with the 2 parts being separated by a single line containing an asterisk (“*”). Notice that javadoc comments start with /** as opposed to /* which marks the beginning of a normal block-comment.

/**

This first sentence should be a concise but complete summary of the API item.

Any further sentences should elaborate and fill in extra details as necessary.

@tag Comment for the tag

*/

Although there are 9 different tags, you are only likely to need 4 of them most of the time. These tags are listed below and should be used in the order shown :

* @author

- classes and interfaces only - required

* @version

- classes and interfaces only – required

* @param

- methods and constructors only

* @return

- methods only

The author and version tags are fairly obvious. These are comments for classes and interfaces only and must be placed after any import statement (which is a bit like the #include in a C program) and directly before the public class or interface definitions. Note that you can have multiple ‘author’ tags. Note that ‘author’ and ‘version’ comments are, by default, omitted from the html documention but can be included using appropriate command line options on the javadoc command.

The ‘param’ and ‘return’ tags are best illustrated using an example.

 /**

 This method creates the shipping order for a parcel. The destination should be the

 distribution centre name.

 @param par

the parcel to be sent

 @param dest
the distribution centre address

 @return

the shipping code string which is returned as empty (length=0)

if the shipping order could not be completed

*/

public String ship(Parcel par, String dest)

The parameters are listed in order that they appear in the method’s parameter list and the return value states any special case values. The ‘return’ tag should be used for all methods except constructors which return void – even if the return value is specified in the function description.

Once you have fully documented your code, you can run the javadoc command over the source code by typing :

javadoc –d docDirectory sourceFilename
for an individual file. This produces the documentation html files in a separate directory docDirectory (usually you call this docs) for the java source file sourceFilename. You can document whole packages of files in by typing in the package name in place of the source filename.

One final comment about javadoc. It is often worth your while to produce the documentation before you write the code as it forces you to think more abstractly and at a higher level before you delve into detailed coding.

PAGE
1

