EE2E1 Lab 2

ELECTRONIC, ELECTRICAL AND COMPUTER ENGINEERING

[image: image1.png]PER|| AD
ARDUA[ALTA

EE2E1 2014/2015
Introduction to Java Programming

Programming Exercise 2

Classes

Dr M. Spann

1. Aims and Objectives

This is the first of the assessed Java labs and is about Java classes. Specifically, in the first part of this programming exercise, you will be asked to design a Java class suitable for representing a standard deck of playing cards and methods for performing fairly simple operations on the deck such as shuffling and dealing the deck. In the second part of the exercise, you will be asked to write a Java class which simulates the playing of a simple card game. Obviously this will make extensive use of your deck of cards class.

The ultimate aim of the exercise is to design and implement several Java classes and consider issues of encapsulation which are fundamental to object orientated programming.

2. Preparatory Work

Revise the course notes on Java classes and what is meant by private and public access to class members.

Consider how you might efficiently represent 52 playing cards arranged as 4 suits of 13 cards each as well as a simple algorithm to simulate a random shuffling of the deck.

Consider how you would represent sub-groups of cards. For example, a hand of cards in a card game as well as a run of cards of the same suit within a hand. Note that the order of the cards within the deck is important but it isn’t for the cards within an individual hand.

3. Lab Work
3.1 A DeckOfCards class

Design and implement a DeckOfCards class to represent a standard set of playing cards.

Implement methods cut(), deal() and shuffle() which cut the pack at some random location, deal a set of hands of cards to a given number of players and shuffle the pack of cards. You may wish to consider a completely random shuffle or any other shuffling algorithm you care to implement. Obviously, it’s up to you to consider suitable parameters and return types of these methods.

Implement a class DeckOfCardsTest which has a main() method which tests your DeckOfCards class and its methods. Devise a suitable means of testing using simple console based I/O.

3.2 Simulating a simplified game of Gin Rummy
The rules for a simplified game of gin rummy are as follows.

The game is for a maximum of 4 players. Each player is dealt 7 cards from the pack. The top card from the remaining deck is then drawn and placed face up as the first card in the ‘discard pile’. Each player takes it in turns and can either draw the top card in the remaining deck, which is face down, or the top card from the discard pile which is face up. The objective is to arrange your 7 cards into one group of 4 and one group of 3 where a group can either be 3 or 4 cards with the same face values (eg. three 7’s or four queens) or a run of cards of the same suit (eg 2,3,4 and 5 of spades). The first player who gets to this stage has won the game. Obviously the key to the game is to judiciously change a card in your hand with the one drawn from the pack or the discard pile. Also other players can see the cards you take from the discard pile which may give them a clue as to other cards that you may need. You may or may not exchange the drawn card with one from your hand depending on the suitability of the card drawn. In either case, one card is discarded and put on the discard pile (face up for all the other players to see) so each player is always holding 7 cards. If all of the cards from the deck have been drawn and a player has yet to win, the discard pile is re-shuffled and placed face down and the game continues.

Design and implement a class PlayGinRummy which simulates the playing of Gin Rummy for up to 4 players. You will make extensive use of your DeckOfCards class. Also you may wish to consider other classes. For example, you may want to have a Player class and each Player object will hold a hand of cards.

You may take one of two approaches to this exercise:

1. Completely interactive

In this case, the user is prompted for decisions about accepting or discarding a card and effectively plays all of the hands. You may or may not wish to implement an algorithm that decides whether a particular hand is a winning hand.

2. Partially or completely autonomous

The computer takes over the playing of one or more of the hands in a multi-player game and makes all of the decisions about whether to accept or discard a card. Also the computer decides whether a particular hand is a winning hand indicating the termination of the game. So, for example in a two-player game, one person can play against the computer or the computer can take over several of the hands in a four-player game.

Obviously the second approach is the most difficult and for which more credit will be given for successful implementations.

Use console-based I/O (not graphically-based) to show a game simulation through to conclusion starting from a randomly shuffled deck. The output should be clear but simple with just enough text generated to show what is happening during the game.

4. Assessment

For the assessment you will asked to submit your code and any example output of your program. This could be perhaps a screen dump of the console as your program runs. Marks will be given for the design of your application and in particular how you have divided it up into classes and for the functionality of each class and how it interacts with other classes in your application. Also an assessment will be made of the overall functionality of your application and marks awarded for how fully your program meets the overall aims of the exercise.
