EE2E1 Lab 3

ELECTRONIC, ELECTRICAL AND COMPUTER ENGINEERING

[image: image1.png]PER|| AD
ARDUA[ALTA

EE2E1 2014/2015
Introduction to Java Programming

Programming Exercise 3

Inheritance

Dr M. Spann

1. Aims and Objectives

This is the second of the assessed Java labs and is about inheritance and polymorphism, which underpins the ideas behind object-oriented programming. In this programming exercise, you are given a number of classes, which are the basis of a simple game of draughts (or chequers as our transatlantic cousins call it). Specifically, you are given 3 classes – GameOfDraughtsGUI, Player and DraughtBoard. The first class, GameOfDraughtsGUI contains all of the graphical user interface code to play the game as well as the main() method. This lab isn’t concerned with Swing or GUI’s so that code has been provided and is straightforward. The class Player contains a definition of a base class representing a player and a single method movePiece(). Finally the DraughtBoard class models the board layout (shown in figure 1) and has methods (which you have to provide) moveBlack() and moveWhite() for moving the pieces. DraughtBoard is not intended to have any ‘game intelligence’ about where to move a piece (that is left to the Player class). It simply moves the pieces according to where the movePiece method in Player tells it although it can check if it’s a valid move. Figures 2 and 3 show how a piece can move diagonally and take an opposing piece. Note that jumps over more than one piece are allowed.

All of the graphics for updating the board once a piece is moved is provided in GameOfDraughtsGUI. If you compile and run this application (GameOfDraughtsGUI contains the main() method), you will see a simple GUI layout with buttons for starting a new game, selecting a player (either a basic or an advanced player – see later) and moving a piece (including a keystroke accelerator). If you click the button to move a piece, nothing happens! It’s up to you to provide the detailed methods in the Player and DraughtBoard classes so that a game between two players is simulated.

2. Preparatory Work

Revise the course notes on inheritance and polymorphism. Download the outline classes GameOfDraughtGUI, Player and DraughtBoard from the following URL : http://www.eee.bham.ac.uk/SpannM/Draughts.html. Load the source files into Textpad and compile and run the application as it stands. Use of the top buttons on the GUI should be obvious.

Check out the rules of draughts – how pieces move and how pieces take other pieces

3. Lab Work

The key issues that this lab addresses are inheritance and polymorphism. The idea is that the application is to provide two levels of player – a basic player and an advanced player. The basic player selects his move using the following very simple algorithm :

Scan all of the pieces (either black or white) in some pre-determined order

If you come across a piece that is able to take an opposing piece, then you must take that opposing piece

If none of your pieces are in a position to take, then re-scan the pieces

The first piece you come to that can move, select a random direction (left or right) and move the piece in that direction.

It is up to you to think about how this algorithm can be improved and then implement your ideas for the advanced player.

To keep things simple, the object of this simplified game is to get as many of your pieces to your opponents baseline as possible. Once they are there, they are removed from the board and you score a point. As soon as one colour (either black or white) has no more pieces left, the colour with the most points wins. All of this is already built into the GUI and as the game progresses, a running score is kept.

In the Player class you have been given, you can see that it has no functionality. You have to derive appropriate classes from this base class and plug them into the GUI so that when you select either basic or advanced player from the menu, polymorphism takes over and the appropriate algorithm is used to select each move. The places in the GameOfDraughtsGUI where basic and advanced player objects are created are indicated in the code. See if you can figure out how it all fits together and how polymorphism operates in this case. In the derived classes you will have to implement the movePiece() method which overrides the base class movePiece() through polymorphism.
Also, implement the moveWhite() and moveBlack() methods of the DraughtBoard board class with reference to the board layout in figure 1. You will need to take account of pieces taking each other and pieces reaching the baseline in which case, the number of pieces left and/or the scores must be updated in these methods.

4. Assessment

For the assessment you will asked to submit your code and any example output of your program. This could be perhaps screen shots of the board at different stages of the game. Marks will be given for the design of your application if you have correctly applied inheritance/polymorphism. Also an assessment will be made of the overall functionality of your application and marks awarded for how fully your program meets the overall aims of the exercise.

x

y

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

Figure 1. The draught board layout

5

1

2

3

4

5

6

7

0

1

2

3

4

6

7

0

Figure 2. Moving a piece diagonally left or right

7

6

4

3

2

1

0

5

0

1

2

3

4

5

6

Figure 3. Taking an opposing piece

7

