Property Lists and Self-Describing Streams

1Property Lists

Description
1
Adding a Property to the List
1
Getting a Property Value
2
Setting a Property Value
2
Other Methods
3
Self-Describing Streams
3
Helper Classes
3
Property Class
3
Property Type Information Class
3
User-Defined Types
4
Adding Property List Support
4
Adding Self-Describing Stream Support
4
STL Deque and Vector Classes
5
Building Class Property Lists
5
Specifying Which Fields are Written to Self-Describing Streams
6
Examples
6
A Class Using a Property List to Describe Its Members
6
Polymorphic Classes
7

Property Lists

Description

The CVisPropList class stores a list (implemented using the STL map class) of name-value-attribute triples which we refer to as Properties. The names are null-terminated character strings. The values can potentially be of any type, although some code is needed to use user-defined types in Property Lists. Arrays of values and references to values can also be stored in Property Lists. The attributes include a sharing flag and a printing flag.

The values in a Property List can be shared or not shared. A copy of a Property List can be used to modify shared values in the original Property List.

Property Lists were designed to work with the Self-Describing stream code described below. Each value in a Property List has a flag associated with it that specifies whether the value should be written when the Property List is written to a Self-Describing Stream.

The CVisPropList class defines a const_iterator type that can be used to enumerate the Properties in a Property List. A valid const_iterator can be used in place of a Property name to specify a Property in a Property List.

Adding a Property to the List

The AddProp method is used to add a Property to the list. The first argument is the name of the Property. The second argument is a reference to a scalar value or a reference to the first value in an array if an array value is being added. If an array value is being added, an additional CVisDim argument follows the reference to the first value in the array. The last argument is an optional sharing flag for the Property.

The AddPropReference method is used to add a reference to a value or array to a Property List.

void AddProp (const char *szPropName,

const TObject& refobj

[, const CVisDim& refdim]

[, bool fShared])
void AddPropReference (const char *szPropName,

TObject& refobj

[, const CVisDim& refdim]

[, bool fShared])
Getting a Property Value

The GetObj method is used to get a Property value from the list. The first argument is either a (character string) name or const_iterator specifying the Property. The second argument is a reference to an object that will receive the value. For arrays, a third (CVisDimIndex) argument is used to specify the index of a value in an array.

The GetObj and GetObjReference methods assume that the specified Property is in the Property List. You can use the HasProp method to see if a Property with a specified name is in a Property List. You can also use the IteratorFromPropName to get a const_iterator for a Property with a specified name. If the const_iterator is not equal to end(), then the Property is in the list.

void GetObj (const char *szPropName,

const TObject& refobj

[,const CVisDimIndex& refdimindex])

void GetObj (const const_iterator &refiterator,

const TObject& refobj

[,const CVisDimIndex& refdimindex])

Setting a Property Value

The SetObj method is used to set a Property value in the list. The first argument is either a (character string) name or const_iterator specifying the Property. The second argument is a reference to an object containing the value or a reference to the first element of an array if an entire array is being set. For arrays, a third argument can be used to specify the index of a value in an array (CVisDimIndex) or the dimensions (CVisDim) of an array if an entire array is being set. The last argument is an optional sharing flag.

The SetObjReference method is used to set a reference to a value or array.

The SetObj and SetObjReference methods assume that the specified Property is in the Property List. You can use the HasProp method to see if a Property with a specified name is in a Property List. You can also use the IteratorFromPropName to get a const_iterator for a Property with a specified name. If the const_iterator is not equal to end(), then the Property is in the list.

void SetObj (const char *szPropName,

const TObject& refobj

[,const CVisDimIndex& refdimindex]
[, bool fShared])
void SetObj (const char *szPropName,

const TObject& refobj

[, const CVisDim& refdim]

[, bool fShared])
void SetObjReference (const char *szPropName,

TObject& refobj

[,const CVisDimIndex& refdimindex]
[, bool fShared])
void SetObjReference (const char *szPropName,

TObject& refobj

[, const CVisDim& refdim]

[, bool fShared])
Other Methods

The “VisPropList.h” header file contains the CVisPropList class definition and is the best place to look to find out about the other Property List methods.

Self-Describing Streams

The Self-Describing Stream classes, CVisSDOStream and CVisSDIStream, are wrappers for the istream and ostream classes in the C++ standard library. The Self-Describing classes were designed to work with the Property List class and its helper classes. When an object is written to a CVisSDOStream class, information about the object’s type is written with the object’s value. This allows us to read objects from a CVisSDIStream class even if we don’t know the order or types of objects in the stream.

The CVisSDOStream class writes formatted text to the ostream class that it wraps. This text is human-readable and human-editable.

To write an object to a CVisSDOStream class, use the “<<” operator. To read an object from a CVisSDIStream class, use the “>>” operator. User-defined types will need to define some helper functions to work with Property Lists and Streams, as described below.

The Self-Describing Streams can use CVisPropList objects to describe the types that it reads and writes. This allows the Self-Describing streams to support “typedefs”, polymorphic types, and unrecognized input types.

The Self-Describing Streams support “typedefs” that can be used to describe types in terms of simpler types. When a “typedef” is given for a type, type information for the values contained in that type do not need to be written each time a value of that type is written. This allows a more compact representation for some objects, making them easier to read and edit.

The Self-Describing Streams support polymorphic types, so an object of one type can read an object of a base-type or a derived-type.

The Self-Describing Streams also allow unrecognized types to be read into CVisPropList objects, with some limitations (STL containers and array values are not supported yet, and this code has not been tested very well).

The CVisSDIFStream and CVisSDOFStream classes are derived from the CVisSDIStream and CVisSDOStream classes, respectively. Their constructors take file names and create streams (ifstream or ofstream) using the specified files. These classes contain Open and Close methods that are called when needed by their base classes.

Helper Classes

Property Class

The CVisProp class is used internally to represent a name-value-attribute triple stored in a Property List. It is sometimes useful to use a CVisProp object in your own programs. For example, the following code will read objects from a CVisSDIStream object (sdistream) and write them to a CVisSDOStream object (sdostream).

while (!sdistream.AtEndOfFile())

{

sdistream >> propT;

sdostream << propT;

}

Property Type Information Class

The CVisPropTypeInfoBase and derived classes are used internally to access type-specific functions through a type-independent interface. The CVisPropTypeInfoBase class contains virtual functions to create new objects, copy object values, write object values to streams, and read object values from streams. The CVisPropTypeInfoBase class also contains default printing flags and Class Property Lists for types that use Class Property Lists with Self-Describing Stream I/O functions. (Classes that use “typedefs” must use Class Property Lists.)

Classes derived from CVisPropTypeInfoBase are templated by object type. The CVisPropTypeInfoNoIO class is used with objects that can be added to Property Lists but can’t be used with Self-Describing Streams. The CVisPropTypeInfoWO class is for objects that can be used in Property Lists and written to CVisSDOStream objects but that can not be read from CVisSDIStream objects. The CVisPropTypeInfoWithIO and CVisPropTypeInfoWithIOPropList classes are used with objects that can be used in Property Lists and Self-Describing Streams. The CVisPropTypeInfoWithIOPropList class includes a Class Property List describing the types contained in the object.

User-Defined Types

Adding Property List Support

The Vision SDK contains the functions needed to use the standard numeric, character (char), and string (const char * and std::string) types, the Windows POINT, SIZE, and RECT types, and many Vision SDK types in Property Lists. To use some other type (TObject) in a Property List, the following functions need to be defined:

CVisPropTypeInfoBase *VisPPropTypeInfoNewForClass(

TObject const &refobj)

CVisPropTypeInfoBase *VisPPropTypeInfoForClass(

TObject const & refobj)

CVisPropTypeInfoBase *VisGetPropTypeInfo(

TObject const& refobject)

Most user-defined types that support Self-Describing Streams will use Property Lists to describe the values that they contain. Those types need to define the following function as well:

void VisBuildObjPropList(TObject& refobj,

CVisPropList& refproplist)

These functions are usually defined using the macros defined in “VisPropList.h” or “VisPropListInternal.inl”. The macros in “VisPropListInternal.inl” include “DECLARE” and “DEFINE” variations used to declare these functions in a header file and define them in a source file.

For a type used with Property Lists but not with Self-Describing Streams, the VIS_PROP_LIST_CLASS_NO_IO macro is used to define these functions. For a type that uses a Property List to describe the values that it contains, the VIS_PROP_LIST_CLASS_WITH_IO_PL or VIS_PROP_LIST_CLASS_WITH_IO_PL_TYPEDEF macro is used and a VisBuildObjPropList function or BuildPropList method is written. For a type that uses its own functions (not a Class Property List) for Self-Describing Stream I/O, the VIS_PROP_LIST_CLASS_WITH_IO macro is used. For polymorphic types, the VIS_PROP_LIST_CLASS_VIRTUAL macro is used and the following virtual methods are added to each derived class that can be instantiated:

virtual CVisPropTypeInfoBase *PropTypeInfoNew(void) const

virtual CVisPropTypeInfoBase *PropTypeInfoLookup(void) const

An example that uses these methods is given below. The image and sequence classes in the Vision SDK also use these methods.

Adding Self-Describing Stream Support

The Vision SDK contains the functions needed to use the standard numeric, character (char), and string (const char * and std::string) types, the Windows POINT, SIZE, and RECT types, and many Vision SDK types with Self-Describing Streams. To use some other type (TObject) with Self-Describing Streams, the following functions need to be defined:

void VisSDIFindTypes(CVisSDIStream& refsdistream,

TObject const& refobj)

void VisSDReadValue(CVisSDIStream& refsdistream,

TObject& refobj)

void VisSDReadObj(CVisSDIStream& refsdistream,

TObject& refobj)

CVisSDIStream& operator>>(CVisSDIStream& refsdistream,

TObject& refobj)

void VisSDOFindTypes(CVisSDOStream& refsdostream,

TObject const& refobj)

void VisSDWriteValue(CVisSDOStream& refsdostream,

TObject const & refobj)

void VisSDWriteObj(CVisSDOStream& refsdostream,

TObject const & refobj)

CVisSDOStream& operator<<(CVisSDOStream& refsdostream,

TObject const & refobj)

The “VisSDIStream.h” and “VisSDOStream.h” files define macros that can be used to define these functions. The “VisPropList.h” and “VisPropListInternal.inl” files define macros that can be used to define the Property List functions and the Self-Describing Stream functions. The macros at the bottom of “VisPropList.h” and “VisPropListInternal.inl” are usually used to define these functions. ”. The macros in “VisPropListInternal.inl” include “DECLARE” and “DEFINE” variations used to declare these functions in a header file and define them in a source file.

For a type (TObject) containing ReadValue and WriteValue methods for use with Self-Describing Streams, the VIS_SD_CLASS_WITH_IO macro can be used. (A type that contains non-standard types should not use this macro because it should implement its own VisSDOFindTypes function.) A type that uses a Property List to describe itself can use the VIS_SD_CLASS_WITH_IO_PL or VIS_SD_CLASS_WITH_IO_PL_TYPEDEF and define the BuildPropList method. A polymorphic class can use the VIS_SD_VIRTUAL_CLASS_WITH_IO_PL macro and defined the BuildPropList, PropTypeInfoNew, and PropTypeInfoLookup methods. We give examples of classes that use the VIS_SD_CLASS_WITH_IO_PL_TYPEDEF and VIS_SD_VIRTUAL_CLASS_WITH_IO_PL macros below.
STL Deque and Vector Classes

The VIS_PROP_LIST_CLASS_DEQUE and VIS_PROP_LIST_CLASS_VECTOR macros defined in “VisPropListInternal.inl” are used to define the functions needed to use the STL deque and vector classes in Property Lists and Self-Describing Streams. We chose to require that these macros be used with deque and vector types to avoid defining extra functions (that could make compilation significantly slower).

Building Class Property Lists

If a type (TObject) uses a Property List to describe itself when it is written to a Self-Describing stream, it needs to provide a VisBuildObjPropList function to describe the objects that it contains. If the type is a class, the macros described above can be used to define a VisBuildObjPropList function that calls a class method named BuildPropList. This method should not be a virtual method and it should not call any virtual methods. (It will be called with a zero this pointer.) This method should use the CVisPropList::AddPropReference method to add references to its member variables (contained objects) to a Property List that will be used to describe the object. See below for examples of classes that contain a BuildPropList method.

Specifying Which Fields are Written to Self-Describing Streams

If a type (TObject) uses a Class Property List to describe itself when it is written to a Self-Describing stream, we can modify the Class Property List to specify that some fields (contained objects) should not be printed. We can also tell a CVisSDOStream to use a “typedef” with objects of this type (TObject).

To get a pointer to the Class Property List used to describe a type, we first call the VisGetPropTypeInfo function to get a pointer to the CVisPropTypeInfoBase object used with the type. Then we call the CVisPropTypeInfoBase::PPropTypeInfo method to get a pointer to the Class Property List used to describe the type. The CVisPropList::SetPrinting method can be used to control the printing of contained objects. The CVisPropTypeInfoBase::SetPropPrinting method can be used to indicate that objects of a given type should not be written to CVisSDOStream objects, even if they are contained in other types.

The CVisSDOStream::UseObjTypedef and CVisSDOStream::UseTypedef methods can be used to tell a CVisSDOStream object to use a typedef for a type. (The optional CVisSDOTypedef argument is a STL vector of STL string objects containing the names of fields in the Class Property List to use in the typedef.) The CVisPropTypeInfoBase::SetAlwaysUseTypedef method can be used to set a flag indicating that “typedefs” should always be used with a specified type.

Examples

A Class Using a Property List to Describe Its Members

This is an example of a class (CSomeObject) that uses a macro and a BuildPropList method to support Property Lists and Self-Describing Streams. In the BuildPropList method, we add the m_nOptions data member as a non-printing Property because we want to allow some applications to use it in Self-Describing Streams but we don’t want it to be used in Self-Describing Streams by default. We don’t add the m_hEvent data member to the Property List because we never want it to be modified when reading from a Self-Describing Stream.

class CSomeObject

{

public:

CSomeObject(void);

~CSomeObject(void);

// This method describes the data members in the class that

// can be stored in Self-Describing Streams. (It should

// not be virtual and it should not call virtual methods,

// so that it will work correctly if this == 0.)

void BuildPropList(CVisPropList& refproplist)

{

// m_nOptions is added as to the Class Property List

// as a non-printing property. If a program changes

// the printing flag, options can be saved (restored)

// when CSomeObject values are written to (read from)

// Self-Describing Streams.

refproplist.AddPropReference("m_nOptions",

m_nOptions, false);

// m_hEvent is not added to the Class Property List.

// It is initialized in the class constructor and

// left unchanged when class data is read from a

// Self-Describing Stream.

// m_strLabel and m_dblData are added to the class

// Property List so that their values can be saved

// (restored) when CSomeObject values are written to

// (read from) Self-Describing Streams.

refproplist.AddPropReference("m_strLabel",

m_strLabel, false);

refproplist.AddPropReference("m_dblData", m_dblData,

false);

}

private:

unsigned int m_nOptions;

HANDLE m_hEvent;

std::string m_strLabel;

double m_dblData;

};

// This macro defines the functions needed to use this class in

// Property Lists and Self-Describing Streams. It specifies

// that "typedefs" should be used when CSomeObject values are

// written to Self-Describing Streams. (Use the

// VIS_SD_CLASS_WITH_IO_PL macro if you don’t want to use

// “typedefs” with a class.)

VIS_SD_CLASS_WITH_IO_PL_TYPEDEF(CSomeObject)

Polymorphic Classes

In this example, we have a base class (CSomeBaseClass) and a derived class (CSomeDerivedClass). Each class has a BuildPropList method and virtual PropTypeInfoNew and PropTypeInfoLookup methods. In addition, a macro is used to define the Property List and Self-Describing Stream functions used with the base class and its derived classes. (A macro is not needed for the derived class.)

class CSomeBaseClass

{

public:

CSomeBaseClass(void);

~CSomeBaseClass(void);

// This method describes the data members in the class that

// can be stored in Self-Describing Streams. (It should

// not be virtual and it should not call virtual methods,

// so that it will work correctly if this == 0.)

void BuildPropList(CVisPropList& refproplist)

{

// m_dblBaseData is added to the Class Property List

// in the base class.

refproplist.AddPropReference("m_dblBaseData",

m_dblBaseData, false);

}

// These two methods are overridden in derived classes to

// give type information (about the derived classes) to the

// property list code. (They can be pure methods if this

// is an abstract base class.)

virtual CVisPropTypeInfoBase *PropTypeInfoNew(void) const

{ return new CVisPropTypeInfoWithIOPropList

<CSomeBaseClass>(0, false); }

virtual CVisPropTypeInfoBase *PropTypeInfoLookup(void)

const

{ return VisLookupPropTypeInfo(

typeid(CSomeBaseClass)); }

private:

double m_dblBaseData;

};

class CSomeDerivedClass : public CSomeBaseClass

{

public:

CSomeDerivedClass(void);

~CSomeDerivedClass(void);

// This method describes the data members in the class that

// can be stored in Self-Describing Streams.

void BuildPropList(CVisPropList& refproplist)

{

// The base class method is called to add its data to

// the Class Property List.

CSomeBaseClass::BuildPropList(refproplist);

// m_dblDerivedData is added to the Class Property

// List in the derived class.

refproplist.AddPropReference("m_dblDerivedData",

m_dblDerivedData, false);

}

// These two methods are overridden in derived classes to

// give type information (about the derived classes) to the

// property list code. The PropTypeInfoNew method creates

// a CVisPropTypeInfoWithIOPropList object, indicating that

// this class uses a BuildPropList method.

virtual CVisPropTypeInfoBase *PropTypeInfoNew(void) const

{ return new CVisPropTypeInfoWithIOPropList

<CSomeDerivedClass>(0, false); }

virtual CVisPropTypeInfoBase *PropTypeInfoLookup(void)

const

{ return VisLookupPropTypeInfo(

typeid(CSomeDerivedClass)); }

private:

double m_dblDerivedData;

};

// This macro defines the functions needed to use this class in

// Property Lists and Self-Describing Streams. It specifies

// that the PropTypeInfoNew and PropTypeInfoLookup class methods

// should be called to find type information about this class.

// We only need a macro for the base class. (No macros are

// needed for the derived class.)

VIS_SD_VIRTUAL_CLASS_WITH_IO_PL(CSomeBaseClass)

