The Microsoft Vision SDK, version 1.2

May 2000

The Microsoft Vision SDK

Version 1.2, May 2000

By the Vision Technology Group, Microsoft Research

Contact: VisSDK@microsoft.com
The Microsoft Vision SDK is a library for writing programs to perform image manipulation and analysis on computers running Microsoft Windows operating systems. The Microsoft Vision SDK was developed by the Vision Technology Research Group in Microsoft Research to support researchers and developers of advanced applications, including real-time image-processing applications. It is a low-level library, intended to provide a strong programming foundation for research and application development; it is not a high-level platform for end-users to experiment with imaging operations. The Microsoft Vision SDK includes classes and functions for working with images, but it does not include image-processing functions. The Microsoft Vision SDK is a C++ library of object definitions, related software, and documentation for use with Microsoft Visual C++.

21
What is the Microsoft Vision SDK?

62
Installing the Vision SDK

73
Getting Started

73.1
Example Projects

73.1.1
ExCamera

83.1.2
ExMFCOpenSave

83.1.3
ExGrabBmp

83.1.4
ExArrayOfPanes

83.1.5
ExCmd

83.1.6
Hello World

93.2
Preparing your code to use the Vision SDK

93.2.1
Naming Conventions

104
What is a CVisImage?

114.1
Pixel and Image Types

114.1.1
Gray Scale Pixel Types:

124.1.2
RGBA Color Pixel Types:

134.1.3
YUVA Color Pixel Types:

134.1.4
Image Types:

144.2
Multi-Band Images

145
Creating a CVisImage Object

166
Basic CVisImage Operations

176.1
Using Windows GDI functions on an Image

177
Displaying an Image

187.1
Displaying in a Windows HDC

187.2
CVisPane and VisDisplayImage

198
Image File I/O

209
Image Sequences

2110
Acquiring Live Images

2210.1
Registering Image Sources on Your Machine

2210.2
List of supported digitizers.

2210.3
Using an Image Source

2311
Visual C++ AppWizard

2512
Memory Management of Image Data

2612.1
Multi-Band Images.

2612.2
Thread Synchronization

2612.3
Sharing an Image across processes

2713
How to redistribute code with the Vision Runtime Files

29A.
License Agreement

33B.
Extending the Vision SDK

33B.1.
Adding a New Pixel Type

33B.2.
Adding a New File I/O Handler

34B.3.
Adding a New Image Source

34C.
Window 9x Notes

35D.
Notes for Digitizers

35E.
Using ImageMagick

36F.
Using the Debug Memory Package

38G.
Other Image Representations

38G.1.
Device Independent Bitmaps (DIBs)

38G.2.
Direct Draw Surface and DXSurface Interfaces

38G.3.
Intel’s Image Processing Library’s IPLImage Representation

39H.
The VisLocalInfo Project

39I.
Intel’s Image Processing Library (IPL) and JPEG Library (IJL)

1 What is the Microsoft Vision SDK?

The Microsoft Vision Software Development Kit (SDK) is a toolkit for carrying out research and developing products for image analysis and processing using Microsoft Windows operating systems. Compared to other typical packages for image processing, it has four key virtues and two flaws:

· Virtue: Suitable for fast, real-time image processing.

· Virtue: Nice interface to Windows, such as shared image memory across processes and GDI interface.

· Virtue: User-definable pixel types (very important for research).

· Virtue: A device-independent interface for image acquisition. It can be used to create binaries that can be transported and run on a machine with any supported digitizer or camera. It can be easily extended to support new types of digitizers or cameras.

· Flaw: The Vision SDK assumes that images are resident entirely in RAM. There is no general support for very large image files that cannot be brought into RAM in their entirety. (We gave this up in the interest of speed and simplicity of programming.) It should be possible to use memory-mapped BMP and RAW files up to 2GB (1GB on Windows 9x) with the SDK, but the current version does not have any helper functions to do this.
· Flaw: The Vision SDK does not include image-processing operators. The Vision SDK is best thought of as a low-level substrate for developing computer vision and/or image processing programs or systems, giving a nice interface to the operating system but not providing high-level image-processing operators. The Vision SDK does include support to convert between our image format and the image format used by Intel’s Image Processing Library. In addition, we hope that some users who develop image-processing functions using the Vision SDK will make them available on their Web sites.

The Vision SDK is a C++ library intended for use with Microsoft Visual C++ version 6.0 or greater through the Microsoft Visual Studio development environment. This document assumes that you have installed Visual C++.

The Vision SDK is distributed in source code form. This will allow users to feel more comfortable with the exact use and any performance implications associated with calling a particular function. Also, many of the classes are templated, requiring that their code be located in header files.
The Vision SDK includes code to read and write Device Independent Bitmap (BMP) files and AVI files containing sequences of images. Code is also included to read GIF, JPG, and PNG files. We hope that this file I/O support will be sufficient for most users of the Vision SDK. If users need to read and write other file formats, it is possible to build a DLL that uses Intel’s IJL library to read and write JPEG images. It is also possible to build a DLL to support additional file formats using a library named ImageMagick. See the appendix for more information about Intel’s IJL library and the ImageMagick library.

The Vision SDK is organized into several projects according to major function:

· The Wizard project is a small project that copies the Vision AppWizard files to the Microsoft Visual Studio templates directory. This will add the Vision AppWizard to the Project tab of the File / New dialog in Microsoft Visual Studio. The Vision AppWizard is used to create new projects that include Vision SDK functions. Users of the Vision SDK should build this project when they install the Vision SDK, even if the release includes DLL and LIB files.

· The VisLocalInfo project is a small project used to build the VisLocalInfo.h header file that defines constants used to indicate whether you’re using the internal or external version of the Vision SDK, whether you’re running on Windows 9x or Windows NT (or Windows 2000), and whether you have the Intel Image Processing Libraries installed. These constants are used to indicate which header files should be included when building projects that use the Vision SDK. Since the VisLocalInfo.h file contents will vary from machine to machine, users of the Vision SDK should build this project when they install the Vision SDK, even if the release includes DLL and LIB files.

· The VisCore project defines the CVisImage and CVisSequence classes that are used to work with single images and sequences of images. The VisCore project also defines classes for exceptions and reference-counted memory that are used in other projects.

· The VisImSrc project defines the CVisImageSource class, the VisFindImageSource function, and the interfaces used to acquire images from digitizers. The VisImSrc project does not communicate directly with digitizers; a digitizer-specific DLL and registry settings describing the DLL are required to use the VisImSrc project to get images from a digitizer. (See the appendix about digitizers for more details.)

· The VisDisplay project defines the CVisPane and CVisPaneArray classes that are used to create windows to display and interact with a single image or a group of images. This project was designed for users who are new to Windows programming and for users who need to display images when debugging their MFC programs. The classes and functions in the VisDisplay project make it easy to display images. We recommend that users who are familiar with Windows programming use the Vision AppWizard to build MFC projects that display images in a view classes. Because the VisDisplay project uses Microsoft Foundation Classes (MFC) to create windows, the VisDisplay project should only be used in MFC applications that use a global CWinApp-derived object. (The ExArrayOfPanes example project shows how these classes could be used in an application that does not follow the MFC document-view architecture.)

· The VisMatrix project provides classes for vectors and matrices. The CVisDVector and CVisDMatrix classes work with vectors and matrices of any dimension. The CVisVector4, CVisTransform4x4, and CVisTransformChain classes are specialized to work with 3-dimensional vectors and matrices using homogeneous coordinates. (An appendix describes the VisXCLAPACK project that users can build to use the CLAPACK library with this project.)

· The VisMeteor, VisVFWCamera, and VisXDS projects can be used to build DLLs that allow the VisImSrc project to acquire images from the Matrox (Meteor ((or Meteor II () digitizers, from digitizers whose drivers support the Microsoft Video For Windows (VFW) interface, or from digitizers whose drivers support the Microsoft DirectShow interface. These projects each include REG files containing registry entries that describe their DLLs. If you do not have a digitizer from Matrox (, you do not need (and won’t be able) to build the VisMeteor project. To build the VisXDS project, you need to install the DirectX and DirectX Media SDKs (which are included in the Platform SDK) and add their include directories and the DirectX Media SDK’s “Classes\Base” directory to the include directories path used by Visual C++, with the “Classes\Base” directory listed before the other include directories.

· The VisXImageMagick project is used to build a DLL that will interface with the ImageMagick library. The file I/O code in the VisCore project will call into this DLL to read or write files using the ImageMagick library.

· The VisXIJL project is used to build a DLL that will interface with Intel's IJL library. The file I/O code in the VisCore project will call into this DLL to read or write JPEG files using the IJL library.

[image: image2.png]TOP

height =
BOTTOM - TOP

BOTTOM

mmmmn
|
|
|
|
|
|
]

LEFT

width =
RIGHT - LEFT

RIGHT

2 Installing the Vision SDK

The Vision SDK is available through the web site for the Vision Technology Group at Microsoft Research: http://www.research.microsoft.com/research/vision/. This page provides links to the current version of the Vision SDK.

You should install the Vision SDK in your Projects directory (e.g. C:\Projects). It will create a subdirectory called VisSDK.

You should then compile the Vision SDK as follows:

1. Add the bin directory of the VisSDK project (i.e. C:\Projects\VisSDK\bin) to your system path. On Windows NT, you can do this by adding it to the PATH variable on the Environment tab of the System control panel. On Windows 9x, you’ll need to add the directory to the PATH variable in your autoexec.bat file. (Eventually, we’d like the setup program that installs the Vision SDK to set the PATH variable.)

2. Open the workspace (VisSDK.dsw) in Visual C++; this will be found in the root directory of the installed files (in our example C:\Projects\VisSDK\VisSDK.dsw).

3. Select the Options item on the Tools menu. Go to the directories tab. Add the "inc" directory of the VisSDK library ((C:\Projects\VisSDK\inc) to your include file path and add the "lib" directory (C:\Projects\VisSDK\lib) to your library file path. (Again, eventually the setup program should do this.)

4. Build Debug and Release versions of the VisSDK by first using the "Build / Set Active Configuration" menu to change the active project to ALL - Win32 Debug and then selecting "Build / Rebuild All". Next, switch to ALL - Win32 Release and then selecting "Build / Rebuild All". If you downloaded the “full” version of the Vision SDK, it includes the LIBs and DLLs that you need, but you’ll need to build the VisLocalInfo and Wizard projects.

5. If you want to use a digitizer to capture live video install one of the following image sources:

· Video For Windows (VFW): Double-click on the VisVFWCamera.reg file in the VisVFWCamera directory to add information about the VisVFWCamera DLLs to your system registry.

· DirectShow: Double-click on the VisXDSReg.bat file (not the VisXDS.reg file) in the VisXDS directory to add information about the VisXDS and VisXRenderFil DLLs to your system registry.

· Matrox (Meteor (or Meteor II (: Build Debug and Release versions of the VisMeteor project and double-click on the VisMeteor.reg file in the VisMeteor directory to add information about the VisMeteor DLLs to your system registry. In order to build this project you will have to have the MIL-Lite libraries installed on your machine and have the paths to the MIL-Lite include and lib directories set in Developer Studio.

6. In addition to this “How To” document, we have an HTML Help file named “VisSDK.chm” in the “Help” directory that documents the classes and functions in the Vision SDK. This help file is out of date because it has not been updated with classes and functions added since the first release of the Vision SDK in 1998, but we hope it will be helpful when you start using the Vision SDK. (If you have problems viewing the “VisSDK.chm” file, try copying the “hhctrl.ocx” file from the “Help\bin” directory to the “Help” directory. If you still have problems, you can download the uncompressed HTLP files from our web site.)

3 Getting Started

3.1 Example Projects

The Vision SDK comes with some example projects that you can build to test various features of the Vision SDK. (They were originally designed to be test programs.) The example projects and the workspace for the example projects, Examples.wsp, are located in the Examples folder. If you only installed the Vision SDK source code, you’ll need to open the VisSDK.wsp workspace file and build the Vision SDK projects before building the Example projects.

3.1.1 ExCamera

The ExCamera program can be used to test and configure digitizers. Remember to double-click on the VisVFWCamera.reg (or VisXDSReg.bat or VisMeteor.reg) file to register you digitizer before running the ExCamera program.

When run, ExCamera may display dialogs to let you choose a digitizer. If dialogs are displayed, you can check a box to make the selected digitizer the default digitizer on your system.

When the ExCamera program is started, it will attempt to capture images from the selected (or default) digitizer. If the “cap” and “G” buttons are disabled, ExCamera did not find a digitizer that it could use. If the “cap” and “G” buttons are enabled and pressed, ExCamera is attempting to capture images from a digitizer. If “cap” and “G” are pressed but no images are being displayed, you may need to adjust your digitizer settings. To adjust the digitizer settings for VFW cameras, first click on the “cap” and “G” buttons to stop grabbing images for the digitizer (and enable the settings dialogs). Then click on the “C” button to get the compression dialog. Select “full frames (uncompressed)” in the compression dialog. You can then click on the “G” button to see if ExCamera can get images from the digitizer. You may also need to click on the “F” button to get the video format dialog or click on the “S” button to get the video source dialog.

The ExCamera program is an old program that was not built with the Vision AppWizard. If you want to build an MFC application that gets images from a digitizer, you should use the Vision AppWizard (on the Project tab of the File / New dialog in MSDev after building the Wizard project).

3.1.2 ExMFCOpenSave

The ExMFCOpenSave can be used to open and save image files. The VisCore project allows you to read a few common file formats and write BMP files. If you need to work with other graphics file formats, you can build the VisXIJL or VisXImageMagick projects.

3.1.3 ExGrabBmp

The ExGrabBmp program can be used to grab a bitmap from a digitizer and save it to a file. It assumes that you have selected a default digitizer using the ExCamera program.
3.1.4 ExArrayOfPanes

The ExArrayOfPanes program tests the CVisPane and CVisPaneArray objects in the VisDisplay project. ExArrayOfPanes shows different normalization options that can be used when displaying images with float pixels. This example also attempts to display an image using a strange pixel format to make sure that our display code recognizes images that it can’t display correctly.

3.1.5 ExCmd

The ExCmd program tests a command-line interface to some of the Vision SDK functions.

3.1.6 Hello World

Frequently, to become familiar with a development system, developers would write the “Hello World” program. The following code is the vision equivalent of “Hello World”. This program requires that you have a digitizer installed and that you have used the ExCamera program to select a default digitizer. Don’t worry about exactly how it works yet, we will explain each feature in more details in the remaining sections.
In order to run this program just create a new console application project in Visual C++, change the projects setting to using MFC in a shared DLL (select the menu item Project / Settings…, change the setting on the General tab), create a new C++ source file, copy this code into it, and build it. When the program runs it will connect to a digitizer, capture an image, and save it out to the disk as the file out.bmp. This file can be viewed using the Paint Brush program.

#include <VisImSrc.h>

void main(void)

{

const char *szFile = "out.bmp";

CVisImageSource imagesource = VisFindImageSource("");

if (imagesource.IsValid())

{

CVisSequence<CVisRGBABytePixel> sequence;

sequence.ConnectToSource(imagesource, true, false);

CVisRGBAByteImage imageT;

if (sequence.Pop(imageT, 2000))

{

imageT.FWriteFile(szFile);

}

sequence.DisconnectFromSource();

}

}

Note: The Vision SDK uses the multithreaded DLL version of the standard runtime libraries. The change to the project settings to use MFC in a shared DLL was made as an easy way to change the version of the standard library used with your program. The program above does not use MFC. Another way to make this change would be to go to the “C / C++” tab of the Project / Settings dialog, select the “Code Generation” category, and choose the “Debug Multithreaded DLL” runtime library for the Debug build and the “Multithreaded DLL” runtime library for the Release build.

3.2 Preparing your code to use the Vision SDK

You can create vision applications that use the Windows GUI or use a command-line interface. (If command line programs use a digitizer, they must require that another program, like ExCamera, has been run to choose a default digitizer.) In either case, you will need to use the multithreaded DLL versions of the standard runtime library with the Vision SDK. (See the note at the end of the previous section.)

The following header files are used to access the various components of the Vision SDK.

· VisWin.h: Includes the Windows (or MFC, depending on your project settings) header files and defines a few basic macros and classes used with the Vision SDK. This file can be used as a precompiled header file or included in you project’s precompiled header file.

· VisCore.h: Provides the CVisImage class and other basic types.

· VisImSrc.h: Supports the capture and processing of live video through the CVisImageSource class and VisFindImageSource functions.

· VisDisplay.h: Provides display features, such as CVisPane or VisDisplayImage

· VisMatrix.h: Provides common Matrix and vector operations.

If you’re using Windows 2000, any of the files above can be used as or in you project’s precompiled header file. If you’re using Windows 9x, you should not include the project header files in you precompiled header file. (See the appendix about Windows 9x for more information.)

3.2.1 Naming Conventions

The file VisSDK.wsp is the Visual C++ workspace file that contains the Microsoft Vision SDK projects. The Examples directory contains the Examples.wsp workspace file that is used with the example projects.

The code is organized into a number of projects. The main Vision SDK DLLs are in projects beginning with the prefix “Vis”. Projects containing code that is only a wrapper for an external library begin with the prefix “VisX”. Example code is located in projects beginning with the prefix “Ex”. For each project with an #include file, the name of the file matches the name of the project.

Version 1.2 of the Vision SDK uses the “Lib” suffix on some workspace and project names to identify workspaces and projects that are used to build static libraries instead of DLLs.

Each class defined by the Vision SDK has a name that begins with “CVis”. Its member functions have no special prefix.

Other globally defined functions begin with “Vis”; global enumerated types begin with “EVis” and their elements begin with “evis”.

4 What is a CVisImage?

The core of the VisSDK is the CVisImage class. Similar to the Windows’ bitmap header, the CVisImage stores a variety of properties about an image and a pointer to the memory used to store the image data. However, unlike bitmaps, a CVisImage is typed using C++ templates to store a particular pixel format.

An image in the Vision SDK is an array of pixels. All pixels are the same type within an image, but you can create images with pixels of any type you wish. Some pixel types, and images using them, are predefined in the Vision SDK (see the sections titled “Predefined Pixel and Image Types” and “Adding a New Pixel Type” below).

The Vision SDK uses the standard Windows RECT structure to define the rectangular area of the image. This structure, shown in the figure below, defines TOP, BOTTOM, LEFT, and RIGHT coordinates such that the data area is within the columns from and including LEFT over to, but not including, RIGHT; and the rows from and including TOP down to, but not including, BOTTOM.

A pixel is addressed by x and y coordinates, where x is the column and y is the row, with the coordinates increasing from left to right and from top to bottom. This is the usual convention in Windows programming. (See Figure 1)

The origin of an image (the location with coordinates (0,0)) can be placed anywhere. This allows you to have use logical coordinate systems that fit with your program instead of having to continually translate between the logical and physical systems. When an image file is read, or a live image is acquired, the origin will be placed at the top left corner of the image.

An image object actually does not contain the block of pixel data itself. Rather, it contains pointers to the pixel data block. This allows several “image” objects to share pixel memory without the need to copy the data. The image data block will be automatically reference counted by the Vision SDK so that the pixel memory can be automatically deallocated when there are no more references.

As mentioned earlier, unlike bitmaps, a CVisImage object does not have a fixed origin. Along with the ability to translate the origin anywhere, you can also have CVisImage objects that do not have the same size memory block as image dimensions. This can be used to easily process only the region of interest in a larger image. A typical use of this would be to analyze an input image for color and then create a Subimage that refers to the region of the input image where a certain color was detected. For more information see “Creating a CVisImage Object”

4.1 Pixel and Image Types

As mentioned, an image is actually a type safe array of pixels. Each image can be templated as “CVisImage<pixeltype>”, using the C++ templating mechanism to instantiate the class definition at compile-time. You can define images with pixels of any type you desire. All of the standard numeric types in C++ are usable as pixel types. We include several predefined pixel and image types in the Vision SDK.

The tables below describe the standard pixel types used in the Vision SDK. The Component Size column gives the size of each field in a pixel type. Gray Scale pixels have one field while RGAB and YUVA pixels have four fields. The Data Type column described the C numeric type used to store field values. The Pixel Size column gives the size of a pixel. The Display column indicates whether images using a pixel type can be displayed using the CVisImage DisplayInHdc method. The ImageSource column indicates whether we can get images using a pixel type from CVisImageSource objects.

4.1.1 Gray Scale Pixel Types:

The gray scale pixel types are comprised of a single component of intensity. The most common bit count is 8, which is used in the type CVisBytePixel. Since there is only a single component the pixel size is equal to the component size. Each type can be named using just the type, or Gray and the type (i.e. CVisGrayBytePixel or CVisBytePixel). A CVisGrayByteImage is compatible with an 8-bit Windows gray scale bitmap.

	Name
	Component Size
	Data type
	Pixel Size
	Display
	ImageSource

	CVis(Gray)BytePixel
	8 bits
	Unsigned char
	8 bits
	Yes
	Yes

	CVis(Gray)CharPixel
	8 bits
	Signed char
	8 bits
	No
	No

	CVis(Gray)ShortPixel
	16 bits
	Signed short
	16 bits
	No
	No

	CVis(Gray)UShortPixel
	16 bits
	Unsigned short
	16 bits
	Yes
	No

	CVis(Gray)IntPixel
	32 bits
	Signed int
	32 bits
	No
	No

	CVis(Gray)LongPixel
	32 bits
	Signed long
	32 bits
	No
	No

	CVis(Gray)UIntPixel
	32 bits
	Unsigned int
	32 bits
	Yes
	Yes

	CVis(Gray)ULongPixel
	32 bits
	Unsigned long
	32 bits
	Yes
	Yes

	CVis(Gray)FloatPixel
	32 bits
	Float
	32 bits
	No
	No

	CVis(Gray)DoublePixel
	64 bits
	Double
	64 bits
	No
	No

4.1.2 RGBA Color Pixel Types:

The RGBA pixel types are comprised of four components of color Red, Green, Blue, and alpha
. The most common bit count is 8, which is used in the type CVisRGBABytePixel. These components are stored in the order B-G-R-A that makes them compatible with the RGBQUAD values used in 32-bit Windows bitmaps. The implementation of the RGBA types is through a templated class CVisRGBA, which defines common methods for accessing the elements of the pixel (R(), G(), B(), A(), SetR(value), etc.).

	Name
	Component Size
	Data type
	Pixel Size
	Display
	ImageSource

	CVisRGBABytePixel
	8 bits
	Unsigned char
	32 bits
	Yes
	Yes

	CVisRGBACharPixel
	8 bits
	Signed char
	32 bits
	No
	No

	CVisRGBAShortPixel
	16 bits
	Signed short
	64 bits
	No
	No

	CVisRGBAUShortPixel
	16 bits
	Unsigned short
	64 bits
	No
	No

	CVisRGBAIntPixel
	32 bits
	Signed int
	128 bits
	No
	No

	CVisRGBALongPixel
	32 bits
	Signed long
	128 bits
	No
	No

	CVisRGBAUIntPixel
	32 bits
	Unsigned int
	128 bits
	No
	No

	CVisRGBAULongPixel
	32 bits
	Unsigned long
	128 bits
	No
	No

	CVisRGBAFloatPixel
	32 bits
	Float
	128 bits
	No
	No

	CVisRGBADoublePixel
	64 bits
	Double
	256 bits
	No
	No

4.1.3 YUVA Color Pixel Types:

The YUV pixel types consist of components similar to the RGB types (Y, U, V, and alpha). For this type the Y and alpha components are unsigned while the u and v components are signed. The implementation of the YUVA types is through a templated class CVisYUVA, which defines the Y(), U(), V(), and A() methods for accessing the elements of a YUVA pixel, along with the corresponding Set variants.

	Name
	Component Size
	Data type
	Pixel Size
	Display
	ImageSource

	CVisYUVABytePixel
	8 bits
	(Un)signed char
	32 bits
	Yes
	Yes

	CVisYUVACharPixel
	8 bits
	(Un)signed char
	32 bits
	Yes
	Yes

	CVisYUVAShortPixel
	16 bits
	(Un)signed short
	64 bits
	No
	Yes

	CVisYUVAIntPixel
	32 bits
	(Un)signed int
	128 bits
	No
	No

	CVisYUVALongPixel
	32 bits
	(Un)signed long
	128 bits
	No
	No

	CVisYUVAULongPixel
	32 bits
	(Un)signed long
	128 bits
	No
	No

	CVisYUVAUIntPixel
	32 bits
	(Un)signed int
	128 bits
	No
	No

	CVisYUVAFloatPixel
	32 bits
	Float
	128 bits
	No
	No

	CVisYUVADoublePixel
	64 bits
	Double
	256 bits
	No
	No

4.1.4 Image Types:

In order to create a image of any particular pixel type simply create it using the template CVisImage<pixel type>. The C++ compiler will create an image class typed for your pixels. In addition, the Vision SDK predefines an image type for each one of the pixel types mentioned above.

	CVis(Gray)CharImage
	CVisRGBACharImage
	CVisYUVACharImage

	CVis(Gray)ShortImage
	CVisRGBAShortImage
	CVisYUVAShortImage

	CVis(Gray)IntImage
	CVisRGBAIntImage
	CVisYUVAIntImage

	CVis(Gray)LongImage
	CVisRGBALongImage
	CVisYUVALongImage

	CVis(Gray)ByteImage
	CVisRGBAByteImage
	CVisYUVAByteImage

	CVis(Gray)UShortImage
	CVisRGBAUShortImage
	CVisYUVAUShortImage

	CVis(Gray)UIntImage
	CVisRGBAUIntImage
	CVisYUVAUIntImage

	CVis(Gray)ULongImage
	CVisRGBAULongImage
	CVisYUVAULongImage

	CVis(Gray)FloatImage
	CVisRGBAFloatImage
	CVisYUVAFloatImage

	CVis(Gray)DoubleImage
	CVisRGBADoubleImage
	CVisYUVADoubleImage

At present, there is no built-in image type for the new “long long” integer type (LONGLONG or _int64 in Visual C++), which is a proposed new standard for C++. If you want to define new pixel types, see the appendix on “Adding a New Pixel Type” below.

4.2 Multi-Band Images

The CVisImage class supports (packed) multi-band images. The CVisImage Shape method can be used to return a CVisShape object. The CVisShape class can be used to specify a rectangle and a number of bands in an image.

Like the image width and height dimensions, the number of bands in an image can be specified at run-time. When specifying points in multi-band images, it is important to specify the column, row, and band of the point. More information about multi-band images in the Vision SDK can be found below in the Memory Management of Image Data section.

5 Creating a CVisImage Object

The size of an image can be specified in the CVisImage constructor. For example, the following code will allocate an image with 100 columns and 50 rows.

CVisByteImage image(100, 50);

The size does not need to be specified when a CVisImage object is constructed. The Allocate method can be used to allocate or reallocate the memory block used with a CVisImage object.

CVisByteImage image;

image.Allocate(100, 50);
As mentioned earlier the memory associated with actual image data is allocated by the VisSDK and is reference counted internally. When the last reference to the data is removed the memory is automatically reclaimed. Each CVisImage object maintains properties about the data and a reference to it. Using the assignment operator on an instance of a CVisImage object copies these properties and increments the reference count on the original data. Obviously this means that changes made to the actual data whether via the original or the new instance will affect the other.

CVisByteImage imageNew = imageOriginal;

imageNew.Pixel(0,0) = 0;

If (imageOriginal.Pixel(0,0) == 0) // TRUE
Since an instance of a CVisImage only contains a few properties and internal data structures they can easily be allocated on the stack or embedded into another class or structure. It is advisable to pass pointers or references to them between functions, however, since the temporary objects created to support pass by value will require copying the entire structure and incrementing and then decrementing the image data reference counts.

Despite the efficiencies of sharing the same memory between CVisImage objects, frequently you will need to make modifications to the image data without affecting the original. There are several ways to handle this but the most common is to use the Copy method. Copy will allocate a new block of image data and fill it with a copy of the original data. It will also alter the properties in the destination CVisImage to reflect the new data. Any references the destination CVisImage was holding will be released, potentially de-allocating the previous image data. Since the destination CVisImage is just a copy of the original image data Copy only works between images with the same pixel types.

The SubImage method can be used to reference a section of a larger image. For example, if a face is detected in a scene a subimage can be created that points to just the section of the original image that contains the face. Making a subimage does not allocate any new image data memory. Note that the upper-left corner of the subimage will not be changed to (0, 0), so the same coordinates can be used to specify a point in the subimage or in the original image.

The CopyPixelsTo method can be used to convert between many standard image types. Although the method is highly optimized it can be very computationally expensive and memory intensive to copy and convert all the data. The CopyPixelsTo method can be used to convert between standard grayscale types, between standard RGBA types, between standard YUVA types, from standard grayscale types to standard RGBA types, and from standard grayscale types to standard YUVA types. The CopyPixelsTo method assumes that the destination image dimensions are large enough to contain the pixels when they are copied.

The CopyPixelsTo method cannot be used to copy from RGBA or YUVA to grayscale or to copy between RGBA and YUVA. The Vision SDK does include a function named VisBrightnessFromRGBA that can be used to convert RGBA pixels or images that use RGBA pixels to grayscale using the formula G = .299 R + .587 G + .114 B. To convert a YUVA image to a grayscale image, you can use a BYTE image to Alias the YUVA image (as a four-band grayscale image) and then use the CopyPixelTo method to copy band 0 of the alias image to a single-band grayscale destination image.

// assign imageFaceOriginal to the subimage in the original data.

CVisByteImage imageFaceOriginal = imageOriginal.SubImage(rectFace);

// fill imageFaceCopy with a new image data block containing just the subimage

CVisByteImage imageFaceCopy.Copy(imageFaceOriginal);

// convert and copy the data into an RGBA version of the face subimage

CVisRGBAByteImage imageFaceRGBA(rectFace);

imageFaceOriginal.CopyPixelsTo(imageFaceRGBA);

6 Basic CVisImage Operations

Each image contains several properties that describe the image. Generally these describe the shape of the image. Since some CVisImage objects can refer to subimages, you should always use these properties when accessing the image data. For example, always use the Left, Right, Top, and Bottom in control loops. Also remember that the Width() of the CVisImage could be smaller than the actual width of the memory block. This could be due to padding of the image data or because the CVisImage is a subimage of a larger image.

In addition to being able to find out about the image data, you can get properties about the underlying memory object. For example, the method MemoryRect will return a CRect that contains the actual size of the image data memory array. These can be used to write optimal data processing routines or to persist the image data into a custom data store: however, they are generally not needed.

There are several methods of accessing the data that a CVisImage refers to. The most common is the Pixel method. Simply call this method with the x and y coordinates that you wish to access. The return value will be typed according to the pixel type of the image. Although calling a single call to Pixel is very simple and convenient, calling it across every pixel in an image is generally inefficient.

For better efficiency, the Vision SDK transparently uses Iliffe vectors. An Iliffe vector is an array of pointers to column zero for each row. For efficiency while processing the pixels in a row of a single-band image, we can first find the pointer to column zero in the row and then offset the pointer by the column of each pixel that we process. To find the pointer to column zero in a row, use RowPointer(row).

The following example calculates the average gray level for an image containing float pixel values. It will work correctly even if the image is a subimage of a large image.

float FindAverageGray(CVisFloatImage image)

{

assert(image.NBands() == 1);

float fltTotalIntensity = 0;

for (int y = image.Top(); y < image.Bottom();y++)

{

float *pflt = image.RowPointer(y);

for (int x = image.Left(); x < image.Right();x++)

fltTotalIntensity += pflt[x];

}

return (fltTotalIntensity / image.NPoints());

}

Images also contain a time stamp and a filename property. The filename is set when an image is read from or written to disk. An image acquired from a digitizer will have its timestamp set to the time that it was acquired.

6.1 Using Windows GDI functions on an Image

Because the CVisByteImage and CVisRGBAByteImage types are compatible with Windows bitmaps, the Windows GDI functions can be used to directly modify these images. To use an image with the Windows GDI functions, we need to get an HDC for the image memory by calling the CVisImage Hdc method. This method could fail, so it is important to check that the HDC returned is nonzero before passing it to Windows GDI functions. When we have an HDC for an image, we can pass it to Windows GDI functions to directly modify the image. When specifying points in the Windows GDI functions, the point (0, 0) will refer to the top-left point in the bounding rectangle of the image.

The following example will create a CVisRGBAByteImage with 100 columns and 100 rows, fill the image rectangle with blue pixels, and draw a text string in the middle of the image.

CVisRGBAByteImage image(100, 100);

HDC hdcImage = image.Hdc();

if (hdcImage != 0)

{

// Note that we use (0, 0) to refer to the top-left corner of the

// image when working with Windows GDI functions.

RECT rect;

rect.left = rect.top = 0;

rect.right = image.Width();

rect.bottom = image.Height();

HBRUSH hBrush = CreateSolidBrush((COLORREF) 0xff0000);

if (hBrush != 0)

{

FillRect(hdcImage, &rect, hBrush);

DeleteObject(hBrush);

}

DrawText(hdcImage, "Hello World!", - 1, &rect,

DT_CENTER | DT_SINGLELINE | DT_VCENTER);

image.DestroyHdc();

}

7 Displaying an Image

Naturally, at some point your program will want to display a CVisImage object. There are three main ways to handle this. First, you can call the CVisImage method DisplayInHdc. Second, you can use the CVisPane class or the VisDisplayImage function. Finally, you can get access to raw Pixel data and build a Windows bitmap from it. The method you select depends on your understanding of Windows programming and how you choose to interact with the user of your program.

Since the final method is standard Windows programming, it will not be covered here. (See the documentation of the Windows SetDIBitsToDevice function to learn how to build a Windows device-independent bitmap and display it. You can pass the POINT returned from the CVisImage TopLeft method to the CVisImage PbPixel method to get a pointer to the start of the pixel memory to be displayed. Remember to use the MemoryWidth method to get the width to use in the BITMAPINFOHEADER structure.)

If your program’s key user interface component is an image, for example as in PaintBrush or similar programs that allow the user to interactively apply operations to an image, then you will probably want to use DisplayInHdc. If, on the other hand, displaying an image is mostly a debugging tool then the CVisPane class or the VisDisplayImage function may make your job easier. This works well for gesture recognition systems where the final output may be a text string identifying the gesture and the intermediate stages of the image are of interest only for development purposes.

7.1 Displaying in a Windows HDC

If a particular CVisImage instance has a pixel type that is compatible with Windows bitmaps, we can use the DisplayInHdc method to display the image in a window. To accomplish this we must first get an HDC for that window. Passing the window’s HWND to the Windows GetDC function can do this. The DisplayInHdc method could fail, so it is important to check its return value to make sure that the image was displayed.

If you would like to implement scrolling you can add a source RECT and a destination POINT as optional parameters to the DisplayInHdc method. Alternatively, you could pass in a source RECT and a destination RECT parameters to the DisplayInHdc method. This can be used to stretch the bitmap to the full window size.

Although DisplayInHdc exists for any CVisImage it is important to realize that not all images can be displayed in Microsoft Windows. You should always check the return value of this method in order to ensure that the image data could be displayed. For example, attempting to display a CVisFloatImage will not work. These image types can be converted using CopyPixelsTo.

DisplayInHdc supported image types:

· CVisRGBAByteImage

· CVisByteImage

· CVisUShortImage (Displayed as RGB555)

· CVisUIntImage

· CVisYUVACharPixel (Displayed as gray scale)

7.2 CVisPane and VisDisplayImage

If your program is an MFC application (with a CWinApp derived application object), you can use the functions and classes in the VisDisplay project to display single images and groups of images in their own windows. To use the VisDisplay project, you’ll need to include the VisDisplay.h header file in your code.

To create a new window displaying an image, use the VisDisplayImage function. To create a window displaying a bunch of images, put the images into a CVisSequence (see the section on sequences below) and then call the VisDisplayImages function to create a window displaying the images in a rectangular array.

You can also use the CVisPane and CVisPaneArray classes to get more flexibility when creating a window to display an image or a group of images. With these classes, you can change the image(s) being displayed, adjust the window styles, and add points and lines to the display.

Each CVisPane allows you to specify how the image data is handled. Image data can be copied into a backing store that will then be used to repaint the display when needed. Alternatively, you can specify that the CVisPane only displays the image. While this is faster than copying the data, it will prevent the CVisPane from repainting the image when needed. This setting is useful for displaying images from an image source, since new image data will be available if the pane needs to be repainted.

(There is also a CVisImageWnd class in the VisCore project that does not use MFC. It has not been tested very well, but you may find it useful.)

8 Image File I/O

On Windows, the three (or four) character extension at the end of a file name (after the ‘.’) indicates the file type. The Vision SDK can write Windows Bitmap (*.bmp) files and call Windows functions to read common graphics file formats (like *.bmp, *.gif, and *.jpg). The Vision SDK also defines a custom file type (*.msv) that can be used to read and write images that may have multiple bands or use non-standard pixel types (like int, float, or user-defined structures).

The Vision SDK contains projects (VisXIJL and VisXImageMagick) that can be used with Intel’s IJL library to read and write JPEG files and with the ImageMagick library to read and write other graphics file formats. These projects are described in the appendix.

The Vision SDK provides a standard interface (CVisFileHandler) that can be used to add support for other file types. See the appendix section about extending the Vision SDK for more information about adding support for other file types.

The CVisImageBase ReadFile and FReadFile methods can be used to read images from files, and the CVisImageBase WriteFile and FWriteFile methods can be used to write images to file. The methods whose names do not start with the letter “F” may throw exceptions (CVisError or CVisFileIOError references) if there are errors reading or writing files. The methods whose names start with “F” will return true if successful and false otherwise. (They will not throw errors.) Users of the Vision SDK should make sure handle potential errors when reading and writing files.

The following code sample can be used to read an image from disk. The file I/O code will use lpszPathName to determine an extension indicating the file format. If the FReadFile fails, it will return false. In this case, the code decides that perhaps the image data was not compatible with pixel type from m_image and tries to load the file into a gray scale image and using CopyPixelsTo to convert it into the pixel type of m_image.

try

{

if (!m_image.FReadFile(lpszPathName))

{

// Try using a grayscale image and then copying the pixels to

// our color image.

CVisByteImage image;

image.ReadFile(lpszPathName);

m_image.Allocate(image.Rect());

image.CopyPixelsTo(m_image);

}

}

catch (CVisFileIOError& referror)

{

AfxMessageBox(referror.FullMessage());

return FALSE;

}

return TRUE;

9 Image Sequences

In order to deal with collections of images the Vision SDK contains the class CVisSequence. Each sequence is typed to hold a particular type of image. The CVisSequenceBase and CVisSequence classes use the STL deque class internally to work with a group of images. (The deque class is documented in the Visual C++ online help. For more information on STL, see “STL Tutorial and Reference Guide : C++ programming with the standard template library” by David R. Musser and Atul Saini, ISBN 0-201-63398-1.) Like the CVisImageBase and CVisImage classes, the CVisSequenceBase class implements the methods that do not depend on a pixel type and the derived CVisSequence class is templated by pixel type.

A deque is a data structure that stores a list of objects and allows efficient indexed object access and insertion and removal of objects from the front and back ends of the list. The CVisSequenceBase and CVisSequence classes have methods to synchronize threads accessing or modifying the sequence. If a timeout interval is passed to a method that pops images from the front or back of a sequence, the method will not return until an image is available or the timeout interval has elapsed. This allows a sequence to be used like a pipe, where one thread waits for images to add to the sequence by another thread.

When a sequence is created, you can specify a limit for its size and use the enum EVisSequence values to specify what happens when the limit is reached. You can specify a short maximum sequence size (usually between 0 and 5) to buffer images that come from another part of your program (like images from a digitizer), you can use a medium sequence size (maybe somewhere between 30 and 200) to store a short sequence of images in memory, or you can specify a very long sequence size to work with video files. There is a sequence option (evissequenceLimitMemoryUsage) that can be used to limit memory usage when working with long sequences of images.

The sequence file I/O methods have been extended since the first release of the Vision SDK. Currently, the most useful sequence file I/O methods are probably the ReadStream, InsertStream, AppendStream, and WriteStream methods defined in VisCore\VisSequence.h. These methods are used to read and write sequence files (like *.avi files). They may throw exceptions if there are file I/O errors. The older ReadFiles, FReadFiles, WriteFiles, and FWriteFiles may also be useful if you need to read and write sequences as a collection of image files.

10 Acquiring Live Images

The VisSDK is independent of the actual digitizer being used. The Image Source module (VisImSrc DLL) provides this functionality. The VisImSrc system allows the user to select one of the digitizers currently installed on the machine. A CVisSequence is then attached to this image source and you can start grabbing images from the digitizer by popping them from the CVisSequence. The HasImageSource method can be used to determine if a CVisSequence is connected to a CVisImageSource. Because an attempt to connect a CVisSequence to a CVisImageSource could fail, you should call the HasImageSource to see if connection attempts succeed.

Image sources may use memory buffers to store images after they are captured. To avoid using too much memory, a maximum length can be set for a CVisSequence. An attempt to add an image to a sequence that is at its maximum length will discard an old image before adding the new image. (The options can be changed to discard newer images, if desired.)

By default, the maximum length of a sequence will be set to zero when it is connected to an image source. A sequence with a maximum length of zero will only accept images when there is a thread waiting to retrieve an image from the sequence. This setting will make sure that images popped from the sequence are the most current, but it will also result in the requesting thread waiting inside the Pop method for images to be added to the sequence.

You might want to call the CVisSequence SetLengthMax method to change the maximum length of a sequence after it has been connected to a CVisImageSource. For example, if your processing thread requires more than one frame time to process an image, you might prefer to use a sequence with a maximum length of one. That way, your processing thread will not need to wait for inside the Pop method for images to be added to the sequence.

In addition to grabbing an image on demand, some image sources will support a continuous grab mode. In continuous grab, the image source retrieves every image from the digitizer. In general, a higher frame rate from digitizers will be achieved when using the continuous grab option. The continuous grab option can also be used to make sure that the images in the sequence are always recent, because newer images will replace older images when they are added to the sequence. The drawback is that even when you are busy doing something else, your computer will be transferring images into system memory. Depending on the image size this can have a significant performance impact on the CPU and the PCI bus.

If you only want to grab single images, you should turn off the continuous grab option. You can do this by passing false to the CVisImageSource SetUseContinuousGrab method. To get a reference to the CVisImageSource object used by a CVisSequence object, first call the CVisSequence HasImageSource method to make sure that the CVisSequence object is connected to a CVisImageSource object. If HasImageSource returns true, you can call the CVisSequence ImageSource method to get a reference to the image source.

10.1 Registering Image Sources on Your Machine

Each image source DLL comes with a REG file. This file contains the registry entries necessary for the Vision SDK to recognize an image source DLL installed on your machine. To add these entries into your registry just right click on the REG file and select the Merge command from the context menu. Alternatively, you can double click on the REG file in the Window’s Explorer.

10.2 List of supported digitizers.

Currently the Vision SDK supports only digitizers that provide Video For Windows (VFW) drivers, digitizers that provide DirectShow drivers, and the Matrox (Meteor (and Meteor II (cards (with MIL-Lite).

10.3 Using an Image Source

Each application can only have one Image Source for each digitizer in the machine. You can attach as many CVisSequence objects to a source as your program requires. In this release, all sequences connected to a source must be of the same pixel type. One overload of the VisFindImageSource function returns a CVisImageSource object. Another overload can be used to find a CVisImageSource for a CVisSequence and connect the sequence to the source.

CVisSequence< CVisRGBABytePixel> sequence;

VisFindImageSource(sequence);

If (sequence.HasImageSource())

// We found an image source to use with the sequence.

Once you have connected a sequence to an image source you are ready to grab images from the digitizer. Sequences have similar semantics to a queue. In order to get the oldest image you just call Pop. Since by default sequences are of 0 length you may be forced to wait for the next available frame from the digitizer. Since this can halt all other activities and the potential exists for the image source to be in an invalid state, calls to Pop should always include a reasonable time out value. In a real time system it is possible that you wouldn’t want to wait any longer than twice the length of a frame before signaling an error. In systems with a serial camera attached, you might consider waiting up to a minute before aborting.

CMyImage imageT;

if (m_sequence.PopFront(imageT, cmsTimeout))

m_image = imageT;

else

AfxMessageBox(“The image source timed out.”);

This example uses a temporary variable to actually grab the image. This would allow you to have a second thread working with the original data while you are trying to grab the next frame. Remember that operator= only copies the pointer to the pixel data, so this is not as expensive as it might first seem.

11 Visual C++ AppWizard

The Vision SDK includes an MFC AppWizard that will allow you to easily create MFC programs that include the functionality of the Vision SDK. The resulting programs will attach a sequence to an image source and support a second thread capturing images in the background. To see a sample of the functionality, follow these steps to create and build a sample program.

1. To run the Vision AppWizard, select the File menu and choose New.

2. On the New dialog box, select the Projects Tab.

3. In the list of project types, select the Vision AppWizard. Fill in the project name and location as appropriate.

4. The following dialog is displayed

5. [image: image1.png]‘Weloome t the Vision AppWizaid. Dn ths page select
youtvison specic options. You il then be able o un
the normal MFC Appwizar.

By wartia rems v an g Socs

‘What kind of piel type should be the defauit?

AGBABy

[Do you want to open and save images?
T~ Do you want to use the VisMalix classes?
T~ Do you want to use the VisDisplay classes?
T~ Display the frame rate in the status bar?

T~ Include sequences in documents?

Erish Cancel Help

6. Once you have made your selections on this page press Next and continue filling out the standard MFC AppWizard. These pages work similarly to the standard AppWizard and are documented in Visual C++’s online documentation. Note: When selecting the dialog version of the AppWizard, the VisDisplay component is included whether you’ve selected it or not. These classes are needed by the generated code to display images.

The Vision AppWizard dialog shown above allows you to choose the following options in your application:

· The first checkbox controls whether or not the generated code includes functionality to connect to an Image Source and capture images in a background thread. Use this when you plan to write code that receives input from a digitizer. If you select this option you must also select a default pixel type. (Most applications should use RGBAByte pixels). This will become the pixel type of the CVisSequence that is attached to the image source. You will still be able to construct other image types and even other types of sequences.

· The next option will add code to your document to read and write images.

· The next two options only add code to include header files in your project in order to provide access to various other components of the Vision SDK. The VisDisplay component provides simple ways to display images in top level windows. It can be very useful for displaying intermediate results. The Matrix classes provide some math extensions that support common linear algebra methods.

· The frame rate option will add boxes to the bottom-right corner of an MFC application that display the rates of image acquisition and image display when using an image source. (It also adds code to your document and view classes to update these boxes when images are acquired or displayed.)

· The option to put sequences in documents will add code to load, save, record, and play sequences to your document class.

After the Vision AppWizard generates your application files, you can customize the code to suit your needs. Here are some parts of the code that you may want to look at when customizing your application:

· Most Important: If your application uses an image source, and probably even if it does not use an image source, you should put your image-processing code in the document’s SetImage method. The SetImage method will be called to change the current image in the document. This can happen when you open an image file, when you step through an image sequence, or when you get a new image from a digitizer.

· If you’re using an Image source, the code to find it is in the application class’s InitInstance method. In this method, you can customize the function that we use to find the image source, whether the “continuous grab” mode should be used with the image source, and whether your application’s initialization should succeed if no image source is available.

· If your application uses an image source, you can choose to process images that you get from the digitizer in a background thread by passing true to the constructor of the document’s m_imagehandler member. This is a nice option to use on dual-processor machines.

· If your application has an image source, you can choose whether live capture should be on or off in your document’s OnNewDocument method.

· If you have a sequence in your document, you can specify its maximum length in the document’s constructor. Be careful not to specify a length that will use up all of your available RAM.

12 Memory Management of Image Data

Image data is stored in a reference counted memory block controlled by a CVisMemBlock object. The pixel data block is a single contiguous range of memory, with the pixels stored in row-major order. Within each row there is no padding of space, but you may specify that each row begin on a 4-byte or 8-byte boundary by using the evisimoptAlignMem4Byte or evisimoptAlignMem8Byte option when creating a CVisImage object. These options may be used to improve the performance of some image operations or to ensure that images with byte pixel types can be stored such that Windows can directly displayed them.

The pixel data block will reside either in your process’ local memory space or in Windows’ shared memory space. Normally, your images will go into shared space. However, you can specify that you want the data to be stored in local memory, for example if you need to conserve shared memory (the limit of shared memory is 1GB in Windows 9x and 2 GB in Windows NT 4.x and Windows 2000). There are two advantages to using shared memory. First, you can use Windows GDI calls to draw graphics such as circles, polygons, lines, and text onto image data (if the pixel type is compatible with Windows bitmaps!). Second, you can get a handle to the data block that can be passed to another process to allow true sharing of the data block. If you need to put an image into your local memory space, use the evisimoptMemNotShared option when you create the image. Otherwise, we recommend the default behavior (in shared memory), which incurs no speed penalty but offers the advantages mentioned above.

There is a third memory allocation option, evisimoptMemObjType, which should not generally be used. This option will use the vector new operator to allocate the array of pixels for the image. The new operator will call the constructor for each pixel when the pixels are allocated and the destructor for each pixel when the pixels are de-allocated. This option is available only to cover the rare case where you might define an image of a new pixel type requiring each individual pixel to be initialized by its constructor or cleaned-up by its destructor.

When you create a Subimage or Alias of an image, or when you use the assignment operator or copy constructor on an image, you create a new image object that refers to the same pixel data block as the original image. The pixel data block is reference-counted, and will automatically be deleted when there are no longer any image objects referring to it. Note that changes to the pixel data made through one of these images will affect the data seen by all the images referring to the same data block. If you wish to create an actual copy of the pixel data into a new block, use the Copy or CopyPixelsTo method of the CVisImage class.

To speed up access to pixels, especially for the built-in pixel types, we use “Iliffe vectors”. An Iliffe vector is a vector of pointers to the rows of data in the image block. Therefore, a reference to pixel (x,y) is turned into an access to the y-th element of the Iliffe vector to retrieve a row pointer, then the x-th element of that row. This is a common trick in image processing libraries, particularly when the image origin is allowed to be anywhere, to minimize the access time to individual pixels. In addition, to speed up access to pixel data shared by several image objects, we share Iliffe vectors whenever possible – they are also kept in reference-counted storage and are automatically deleted when no longer used.

12.1 Multi-Band Images.

Most often, vision programs manipulate two-dimensional images. If the pixels have multiple elements, this is normally represented by declaring the pixel type to be an aggregate. For example, the predefined “CVisRGBABytePixel” type, used for most color image processing, is a structure with components for R, G, B, and A (the “alpha” channel used for image blending). However, you may have occasion to process images in which the number of components of each pixel is not known until run-time. To support this case, the Vision SDK actually defines all fundamental data structures and operators to work on multi-band images. This adds a third dimension to the pixel array, representing the depth of the pixels.

However, most processing takes place on single-band images, and indeed much of the Vision SDK only works on single-band images. When a function in the Vision SDK works only on single-band images, the online function documentation makes that clear. If you write a function that accepts images and your function only works on single-band images, you should assert that (image.Nbands() == 1) in your code.

The Vision SDK only supports “packed” multi-band images, in which the image is a two-dimensional array of “chunky” pixels, each containing all components of the pixel. There is no specific support for “planar” multi-band images, in which the image consists of a vector of two-dimensional single-band images, with each image representing one component of the signal. However, an image sequence could be used to achieve the effect of planar pixels.

12.2 Thread Synchronization

When the Vision AppWizard creates a program to work with images from a digitizer, a background thread may be used to process images in the CImageHandler class before giving the images to the CDocument-derived class used in your application. In these applications, multiple threads may attempt to access the CVisImage objects in the CImageHandler and CDocument-derived classes.

When using a CVisImage object that may be accessed by multiple threads, you should make a local copy of the CVisImage object and use the local copy instead of pointers (or references) to the shared object. (CVisImage copy constructors and assignment operators are synchronized to synchronize threads making copies of CVisImage objects.) Once you have a local copy of a CVisImage object, you control the data stored in the CVisImage object and you control a reference to the data pointed to by the CVisImage object.

12.3 Sharing an Image across processes

The CVisImage MemBlock method returns a reference to the CVisMemBlock used by a CVisImage object. If a CVisMemBlock object controls a memory block that can be shared with other processes, its HFileMapping method will return a non-zero Windows HANDLE that can be used to share the memory with another process. If a CVisMemBlock does not control memory that can be shared with another process, its HFileMapping method will return zero.

To share the memory block controlled by a CVisMemBlock object with another process, the source process should call the CVisMemBlock HFileMapping, CbData, and IbOffset methods to get a HANDLE for the memory block, its size, and an offset used with the memory block. The source process will need to pass the HANDLE, size, and offset to the destination process. Since HANDLE values are process dependent, the Windows DuplicateHandle API will need to be called to find a HANDLE value that can be used in the destination process. Once the destination process gets a HANDLE value that it can use, this HANDLE, the size, and offset can be used to construct a new CVisMemBlock object in the destination process.

To share a CVisImage object with another process, the source process will need to pass its CVisMemBlock information, the shape of the memory block (returned from the CVisImage MemoryShape method), and the bounding rectangle used with the image (returned from the CVisImage Rect method) to the destination process. If needed, the name of the image (returned from the CVisImage Name method), and the image timestamp (returned from the CVisImage Filetime method) should also be passed to the destination process. The destination process can use the CVisMemBlock information to construct a CVisMemBlock object that controls the image’s memory block. The CVisMemBlock and image dimensions can be passed to the constructor of a CVisImage object to create an image in the destination process that uses the same memory block as the image in the source process. Then the name and timestamp properties can be set in the image in the destination process. Note that the source and destination images should use the same pixel types. The CVisImage PixFmt method can be used to identify the standard image pixel types.
13 How to redistribute code with the Vision Runtime Files

If you want to distribute your compiled executable files to another machine that does not have the Vision SDK installed, you will also need to distribute VisCore.dll and possibly some other files.

· If you use the VisDisplay project, you’ll need to redistribute VisDisplay.dll.

· If you use the VisMatrix project, you’ll need to distribute VisMatrix.dll.

· If you use the VisImSrc project, you’ll need to distribute VisImSrc.dll and the DLL and REG files for at least one image source.

· If you use the ImageMagick library to read and write files, you’ll need to redistribute VisXImageMagick.dll and the ImageMagick DLLs (IMagick.dll, and Magick*.dll). (Be sure to check the license agreements that come with ImageMagick for any redistribution restrictions.)

· If you use Intel’s IJL library to read and write JPEG files, you’ll need to redistribute VisXIJL.dll and the Intel IJL DLL(s) (currently ijl11.dll.dll). (Be sure to check the license agreements that come with Intel’s IJL library for any redistribution restrictions.)

The VisSDK DLLs can be found in the bin directory of the VisSDK library. The ImageMagick DLLs will be in the bin directory of the ImageMagick library. If the DLL files are located in the same directory as the EXE file you send, Windows will find them automatically at execution time.

In addition to the files used for the Vision SDK you will also need to provide MFC and C runtime DLLs. The most common files are MFC42.DLL and MSVCRT.DLL. Your particular application may require additional DLLs depending on the functionality you utilize. Some developers have noticed that most installations of Windows 9x have most or all of these DLLs installed. This is because many of the applets that come with Windows 9x are MFC applications. Systems that have other MFC applications installed may also have the MFC DLLs.

If you install the shell update release of Windows NT 4.0, and have no other applications installed, your system will not, by default, have the MFC DLLs installed. The Windows NT shell applets do not use the MFC DLLs and, as a result, Windows NT does not install them. You will need to install the correct version of the MFC DLLs yourself. Be careful about the version; if you have just your end-user copy of the DLLs, they may overwrite existing DLLs. So you should provide an installation routine that checks the version of DLLs and only copies over DLLs as necessary.

Caution: The licensing agreement that comes with MFC does not permit you to redistribute the debug versions of the MFC library. You are only allowed to redistribute the retail version.

 License Agreement

END-USER LICENSE AGREEMENT FOR MICROSOFT PRE-RELEASE SOFTWARE

Microsoft Vision Software Development Kit, Pre-Release Beta Version 1.2

This End-User License Agreement for Microsoft Pre-Release Software ("EULA") is a legal agreement between you (either an individual or an entity) and Microsoft Corporation for the Microsoft pre-release software product identified above, which includes computer software and may include associated media, printed materials, and "online" or electronic documentation ("SOFTWARE"). By installing, copying, or otherwise using the SOFTWARE, you agree to be bound by the terms of this EULA. If you do not agree to the terms of this EULA, do not install, copy or use the SOFTWARE.

The SOFTWARE is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. The SOFTWARE is licensed, not sold.

1. GRANT OF LICENSE.

This EULA grants you the following limited, revocable, non-exclusive, nontransferable, royalty-free license rights:

1.1 You may install and use the SOFTWARE in source code form on an unlimited number of computers on your premises for the sole purposes of (a) designing, developing, testing and debugging your software application products that operate in conjunction with Microsoft Windows 9x, Microsoft Windows NT, or Microsoft Windows 2000 operating systems (each, a "Microsoft Operating System"), and (b) including the SOFTWARE in your Application (as defined below) for the limited purposes set out in Section 1.2.

1.2 In addition to the rights granted in Section 1.1, Microsoft grants you the right to reproduce and distribute the SOFTWARE, or any portion thereof, provided that: (a) you may distribute the SOFTWARE in object code only, and only in conjunction with and as part of a software application product developed by you that adds significant and primary functionality to the SOFTWARE and operates in conjunction with a Microsoft Operating System (your "Application"); (b) you do not use Microsoft’s name, logo, trademarks or any other references as part of, or to market, your Application; (c) you include a valid copyright notice on your Application; and (d) you agree to defend, hold harmless, and indemnify Microsoft, including payment of attorneys’ fees and other costs, from and against any third party claims or lawsuits that arise or result from the distribution or use of your Application.

1.3 The source code of the SOFTWARE is Microsoft's confidential information, and you agree not to disclose or provide any SOFTWARE source code to any third party without Microsoft’s express written permission therefor. You may disclose the SOFTWARE source code only to your employees who have a need to know in order to accomplish the purposes identified in Section 1.1. Such employees’ use of the SOFTWARE source code shall take place solely at your site, and you will have executed appropriate written agreements with such employees sufficient to enable you to comply with the terms of this EULA. You will maintain a list of all employees who have had access to the SOFTWARE source code or related information. However, you may disclose the source code of the SOFTWARE to third parties in accordance with judicial or other governmental order, provided you shall give Microsoft reasonable notice prior to such disclosure and shall comply with any applicable protective order or equivalent. This provision shall survive the termination or expiration of this EULA.

1.4 The SOFTWARE contains pre-release code that is not at the level of performance and compatibility of a final, generally available product offering. The SOFTWARE may not operate correctly, and may be substantially modified by Microsoft. Microsoft is not obligated to make this or any later version of the SOFTWARE commercially available. If you redistribute the SOFTWARE or any portion thereof as provided above, you are solely responsible for updating your customers with versions of your Application that operate satisfactorily with any updates and, if available, any commercial release of the SOFTWARE by Microsoft.

1.5 Microsoft and its suppliers retain title and all ownership rights to the SOFTWARE. All rights not expressly granted herein are reserved to Microsoft.

2. COPYRIGHT.

All rights, title, and copyrights in and to the SOFTWARE (including, but not limited to, any images, photographs, animations, video, audio, music, text, and "applets" incorporated into the SOFTWARE) and any copies of the SOFTWARE are owned by Microsoft or its suppliers. The SOFTWARE is protected by copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material.

3. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

3.1 You may not reverse-engineer, decompile, or disassemble the object code portions of SOFTWARE, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.

3.2 Without prejudice to any other rights, Microsoft may terminate this EULA if you fail to comply with any of its terms and conditions by notifying you in writing. Upon receipt of such notice, you must promptly destroy all copies of the SOFTWARE and any part thereof, and certify in writing to Microsoft that this has been accomplished.

3.3 You may not sell, resell, rent, lease, lend or otherwise transfer for value, the SOFTWARE except as expressly allowed by this EULA.

3.4 Microsoft is not obligated to provide you with technical support, pre-release version updates, supplements, or related information for the SOFTWARE ("Support Services") under this EULA. However, if Microsoft in its sole discretion provides you with any Support Services for the SOFTWARE, such material shall be deemed included as part of the SOFTWARE, and in any event governed by this EULA unless other terms of use are provided by Microsoft with such Support Services. Furthermore, Microsoft is not obligated to make the SOFTWARE commercially available, and in no event shall Microsoft be obligated to provide you with a copy of any commercial release version of the SOFTWARE under this EULA. You may from time to time provide suggestions, comments or other feedback to Microsoft concerning your experience with or use of the SOFTWARE ("Feedback"). Both parties agree that all Feedback is and shall be given entirely voluntarily, and Microsoft shall be free to use, disclose, reproduce, license or otherwise distribute, and exploit the Feedback as it sees fit, entirely without obligation or restriction of any kind on account of intellectual property rights or otherwise. Feedback, even if designated as confidential by you, shall not, absent a separate written agreement, create any confidentiality obligation for Microsoft, except that Microsoft will not utilize Feedback in a form that personally identifies you.

4. DISCLAIMER OF WARRANTIES; EXCLUSION OF DAMAGES: LIABILITY LIMITATIONS

4.1 TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, MICROSOFT AND ITS SUPPLIERS PROVIDE THE SOFTWARE, AND ANY (IF ANY) SUPPORT SERVICES RELATED TO THE SOFTWARE ("SUPPORT SERVICES"), "AS IS" AND WITH ALL FAULTS, AND HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF LACK OF VIRUSES, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, AND OF LACK OF NEGLIGENCE OR LACK OF WORKMANLIKE EFFORT, ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE. THE ENTIRE RISK AS TO THE QUALITY OF OR ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE AND SUPPORT SERVICES, IF ANY, REMAINS WITH YOU.
4.2 To the maximum extent permitted by applicable law, in no event shall Microsoft or its suppliers be liable for any special, incidental, indirect, or consequential damages whatsoever (including, but not limited to, damages for loss of profits or confidential or other information, for business interruption, for personal injury, for loss of privacy, for failure to meet any duty including of good faith or of reasonable care, for negligence, and for any other pecuniary or other loss whatsoever) arising out of or in any way related to the use of or inability to use the SOFTWARE, the provision of or failure to provide Support Services, or otherwise under or in connection with any provision of this EULA, even in the event of the fault, tort (including negligence), strict liability, breach of contract or breach of warranty of Microsoft or any supplier, and even if Microsoft has been advised of the possibility of such damages. Because some states/jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

4.3 Notwithstanding any damages that you might incur for any reason whatsoever (including, without limitation, all damages referenced above and all direct or general damages), the entire liability of Microsoft and any of its suppliers under any provision of this EULA and your exclusive remedy for all of the foregoing shall be limited to Five U.S. Dollars ($5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails its essential purpose.

5. MISCELLANEOUS

5.1 All SOFTWARE provided to the U.S. Government pursuant to solicitations issued on or after December 1, 1995 is provided with the commercial rights and restrictions described elsewhere herein. All SOFTWARE provided to the U.S. Government pursuant to solicitations issued prior to December 1, 1995 is provided with RESTRICTED RIGHTS as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or FAR, 48 CFR 252.227-7013 (OCT 1988), as applicable.

5.2 THE SOFTWARE MAY CONTAIN SUPPORT FOR PROGRAMS WRITTEN IN JAVA. JAVA TECHNOLOGY IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED, OR INTENDED FOR USE OR RESALE AS ONLINE CONTROL EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF JAVA TECHNOLOGY COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE. Sun Microsystems, Inc. has contractually obligated Microsoft to make this disclaimer.

5.3 You agree not to export or re-export the SOFTWARE, any part thereof, or any process or service that is the direct product of the SOFTWARE (the foregoing collectively referred to as the "Restricted Components"), to any country, person, entity or end user subject to U.S. export restrictions. You specifically agree not to export or re-export any of the Restricted Components (a) to any country to which the U.S. has embargoed or restricted the export of goods or services, which may currently include, but are not necessarily limited to, Cuba, Iran, Iraq, Libya, North Korea, Sudan and Syria, or to any national of any such country, wherever located, who intends to transmit or transport the Restricted Components back to such country; (b) to any end-user who you know or have reason to know will utilize the Restricted Components in the design, development or production of nuclear, chemical or biological weapons; or (c) to any end-user who has been prohibited from participating in U.S. export transactions by any federal agency of the U.S. government. You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended, revoked or denied your export privileges.

5.4 If you acquired this product in the United States, this EULA shall be construed and controlled by the laws of the State of Washington without regard to conflicts of law. If this product was acquired outside the United States, local law may apply. If you acquired this product in Canada, this EULA is governed by the laws of the Province of Ontario, Canada, and each of the parties hereto irrevocably attorns to the jurisdiction of the courts of the Province of Ontario and further agrees to commence any litigation that may arise hereunder in the courts located in the Judicial District of York, Province of Ontario.

5.5 Should you have any questions concerning this EULA, or if you desire to contact Microsoft for any reason, please send email to vissdk@microsoft.com or write: Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.

6. CANADIAN PROVISIONS.

Si vous avez acquis votre LOGICIEL au CANADA, le texte suivant vous concerne :

EXCLUSION DE GARANTIE. Le LOGICIEL est considéré accepté par le Bénéficiaire. Ce LOGICIEL est fourni en version pré-commerciale. Il peut faire l'objet de modifications sans préavis et des changements importants peuvent lui être apportés avant la commercialisation de sa version finale. dans toute la mesure permise par lE DROIT applicable, Microsoft et ses fournisseurs VOUS fournissent LE LOGICIEL, AINSI QUE, LE CAS ÉCHÉANT, TOUT SERVICE D’ASSISTANCE RELATIF à ce LOGICIEL (LES "SERVICES D’ASSISTANCE"), « COMME TELS ET AVEC TOUS LEURS DEFAUTS ». EN OUTRE, Microsoft et ses fournisseurs excluent par les présentes toute autre garantie légale, expresse ou implicite, RELATIVE AU LOGICIEL ET AUX SERVICES D’ASSISTANCE, notamment (le cas échéant), toute garantie : de PROPriété, d’absence de contrefaçon, DE qualité, d’adAPTAtion à un usage particulier, d’absence de viruS, DE précision, d’exhaustivité des réponses, des résultats obtenus, D’ABSENCE de négligence, ou de défaut de fabrication, de jouissance paisible, d’absence de trouble de possession ET DE conformité à la description. Le Bénéficiaire assume l’ensemble des risques découlant de l’utilisation ou du fonctionnement DE LOGICIEL ET DES SERVICES D’ASSISTANCE.

EXCLUSION de responsabilité pour les dommages ACCESSOIRES, INDIRECTS ET CERTAINS AUTRES types de DOMMAGES. dans toute la mesure permise par lE DROIT applicable, Microsoft ou ses fournisseurs ne pourront en aucun cas Être tenus responsables de tout dommage spécial, ACCESSOIRE, INCIDENT OU indirect de quelque nature que ce soit (Y COMPRIS, MAIS NON DE FACON LIMITATIVE, LES pertes de bÉnÉfices, pertes d'informations CONFIDENTIELLES ou autres INFORMATIONS, interruptions d'activitÉ, préjudices corporels, atteintes à la vie privée, manquement à toute obligation (notamment l’obligation de bonne foi et de diligence), négligence, et pour toute perte pécuniaire ou autre DE QUELQUE NATURE QUE CE SOIT), rÉsultant de, ou RELATIFS A, l'utilisation ou l'impossibilitÉ d'utiliser LE LOGICIEL OU LES SERVICES D’ASSISTANCE, OU LA FOURNITURE OU LE Défaut de fourniture des services d’assistance, ou AUTREMENT EN VERTU DE, OU RELATIVEMENT A, TOUTE DISPOSITION de ce cluf supplémentaire, mÊme si la société Microsoft ou un quelconque fournisseur a été PRÉVENU de l'ÉventualitÉ de tels dommages.

LIMITATION DE RESPONSABILITÉ ET RECOURS. NONOBSTANT TOUT DOMMAGE QUE le Bénéficiaire POURRA SUBIR POUR QUELQUE MOTIF QUE CE SOIT (NOTAMMENT TOUS LES DOMMAGES énumérés CI-DESSUS ET TOUS LES DOMMAGES DIRECTS OU GÉNÉRAUX), L’ENTIÈRE RESPONSABILITÉ DE MICROSOFT ET DE L’UN QUELCONQUE DE SES FOURNISSEURS AU TITRE DE TOUTE STIPULATION DE CE CLUF SUPPLÉMENTAIRE ET VOTRE SEUL RECOURS EN CE QUI CONCERNE TOUS LES DOMMAGES PRÉCITÉS NE SAURAIENT EXCÉDER 5 DOLLARS U.S. (US$ 5.00), SELON LE PLUS ÉLEVÉ DES DEUX MONTANTS. LES PRÉSENTES LIMITATIONS ET EXCLUSIONS DEMEURERONT APPLICABLES DANS TOUTE LA MESURE PERMISE par lE DROIT APPLICABLE QUAND BIEN MÊME UN QUELCONQUE REMÈDE À UN QUELCONQUE MANQUEMENT NE PRODUIRAIT PAS D’EFFET.

La présente Convention est régie par les lois de la province d'Ontario, Canada. Chacune des parties à la présente reconnaît irrévocablement la compétence des tribunaux de la province d'Ontario et consent à instituer tout litige qui pourrait découler de la présente auprès des tribunaux situés dans le district judiciaire de York, province d'Ontario.

Au cas où vous auriez des questions concernant cette licence ou que vous désiriez vous mettre en rapport avec Microsoft pour quelque raison que ce soit, veuillez contacter la succursale Microsoft desservant votre pays, ou écrire à : Microsoft Research, One Microsoft Way, Redmond, Washington 98052-6399 U.S.A.
A. Extending the Vision SDK

A.1. Adding a New Pixel Type

Any type can be used as the pixel type in a CVisImage (or in other classes that have a templated pixel type, like CVisSequence). Some methods and functions that work with image data may only work with the standard pixel types. Other methods or functions may assume that some standard operators, like the addition operator, are defined for your pixel type. If the methods or functions that make these assumptions are not expected to fail, these assumptions should be detectable as compile-time errors or run-time assertions.

If your pixel type has special initialization or finalization code, you’ll need to specify the evisimoptMemObjType option where creating images with your pixel type and be careful not to call functions or methods that set bytes in your image or copy bytes from one image to another image. The SDK was written with the assumption that such pixel types would not be commonly used.

A.2. Adding a New File I/O Handler

The Vision SDK has several “file handlers” for file I/O, including a file handler that calls the VisXIJL DLL (if it exists) to use Intel’s JPEG library and a file handler that calls the VisXImageMagick DLL (if it exists) to use the Image Magick library. If you want to add support for an image file format that is not supported by the Vision SDK, you’ll need to write your own file handler for that file format, and add your file handler to the global list of file handlers used by the Vision SDK.

When you call the CVisImage methods to read an image from a file or write an image to a file, the CVisImage code goes through a global list of file handlers trying to find a file handler that supports the specified image file format. (If not explicitly specified, the file name extension is used to specify the image file format.) When a file handler is found that supports the specified file format, it is used to read or write the image file.

All file handlers are derived from CVisFileHandler. They are added to a global list of available file handlers by calling the static CVisFileHandler::AddHandler method. This can be done in the constructor of a static variable or in the initialization code of your program. The CVisFileHandlerInit class in the FileIO.cpp file in the VisCore project gives an example of class that is used as a static variable to add the file handlers used in the SDK to the list of available file handlers.

File handlers override the virtual SupportsPixelType, MatchExtension, ReadHeader, ReadBody, WriteHeader, and WriteBody methods of CVisFileHandler. If you’re going to write you own file handler, you might want to use the CVisPPMFileHandler and CVisPSFileHandler classes as examples.

A.3. Adding a New Image Source

An image source is a dynamic-link library (DLL) that provides interfaces that the SDK can use to get images from a digitizer. The DLL is only loaded when the SDK wants to use the digitizer that it supports. The SDK is made aware of the DLL by entries in the Windows Registry. A REG file (or INF file or EXE) to create the registry entries is normally distributed with the DLL.

The DLL for an image source exports a function named VisGetImSrcProvider (whose type, T_PfnVisGetImSrcProvider, is defined in the VisImSrcIFace.h header file in the VisImSrc project). This function is passed a string identifying a “provider”. It creates and returns an IVisImSrcProvider interface for a provider object. This interface is used to get a list of available image source “devices” (e.g. card-signal-channel combinations for the Matrox (Meteor (card or VFW capture devices) for the provider. The SDK allows the user to select a device from this list. Then the SDK calls another IVisImSrcProvider method to get an interface for the device selected by the user. (Typically, the provider is a class derived from IVisImSrcProvider and the device is a class derived from IVisImSrcDevice and IVisImSrcSettings.)

Registry keys describing image sources are stored under the key 1.0\ImSrc\Devs (or Debug\1.0\ImSrc\Devs) subkey of the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisSDK registry key. The name of each key is used as a string to identify each image source provider. The default value for each key gives a string describing the provider. The value named DLL gives the name of the DLL used with the provider. The value named Available is used to indicate whether a provider should be included in the list of providers shown to the user. It should be a DWORD value equal to 1 if the provider should be included in the list, 0 otherwise. (The VisMeteor.reg file in the VisMeteor project and the VisVFWCamera.reg file in the VisVFWCamera project might be good examples to look at when writing your own REG file.)

B. Window 9x Notes

The Vision SDK makes extensive use of C++ templates. This requires a large amount of memory while compiling. Under Windows 95 and Windows 98 this large memory requirement may cause difficulties. It is recommended that you compile the SDK under Windows NT. If you do want to build under Windows 9x you should have at least 64 MB RAM.

If your project uses precompiled header files, you should not include the main Vision SDK project files (like “VisCore.h”) in you precompiled header file. (If you do, you may get compiler errors.) The Vision SDK does include a header file named “VisWin.h” that you should be able to use as a precompiled header file or include in your project’s precompiled header file.

C. Notes for Digitizers

· Video For Windows: The Vision SDK can work with the most common image formats used with Video For Windows, but it does not have support for some compressed Video For Windows images. You may need to go to the Video For Windows Compression dialog and turn off image compression to get the Vision SDK to work with your Video For Windows digitizers.

· DirectShow: The VisXDS project may return images that are upside-down (“flipped”), and it may not work with some video encodings. It is possible to correct the problem of flipped images by modifying the registry settings used with the VisXDS DLL. We’re working on fixes to these problems.

· Matrox (Meteor (: Remember to add the MIL-Lite include and library directories to the include and library paths used in Microsoft Developer Studio.

D. Using ImageMagick

If you want to use the ImageMagick library to read and write graphics file formats like png, tiff, and tga, do the following:

· Go to the ImageMagick home page at http://www.wizards.dupont.com/cristy/ImageMagick.html. Click on the “Windows NT” link (or click on the “ImageMagick” link to go to the ImageMagick release directory and then click on the “NT” link) to go to the release directory for the Windows NT version of ImageMagick.

· Download the ZIP file containing the release version number in its name. (For the 5.1.1 release, the file was named “ImageMagick-5_1_1.zip”.) Do not download the ZIP file named “ImageMagick-nt.zip”. (It does not contain the source files that you need to build ImageMagick and the libraries that it uses.) If don’t see a ZIP file but you do see a file whose name ends in “.tar.gz”, you’re probably in the wrong directory. Click on the “NT” link to go to the release directory for the Windows NT version of ImageMagick.

· Uncompress the ZIP file in the directory containing the Vision SDK (e.g. “c:\Projects”) and change the name of the ImageMagick root directory (e.g. “ImageMagick-5_1_1”) to “ImageMagick”. The Vision SDK uses a relative path (“..\ImageMagick\lib”) to find the libraries it needs to link with.

· Open the “MagickVersion.h” file in the root of the ImageMagick project. Change the version number and version string to match the version of the current ImageMagick release.

· Open the ImageMagick\magick\magick.h file. Comment out the line that define “Has_X11” in the WIN32 section of the file.

· Build the ImageMagick DLLs and libraries by building Debug and Release versions of the "magick" project (using the "Build / Set Active Configuration" menu to change configurations).

· Either add the "bin" directory of the ImageMagick library to your system path or copy the DLLs from the "bin" directory of the ImageMagick library to the "bin" directory of the VisSDK library. If you elect to add the ImageMagick bin directory to your system path, be sure to restart Developer Studio to allow the change to take affect.

· Open the Vision SDK workspace and build Debug and Release versions of the VisXImageMagick project. The VisXImageMagick DLLs will be used by the VisSDK code to interface with the ImageMagick code.

If you have problems building ImageMagick or VisXImageMagick, you may need to change the ImageMagick project settings. With previous versions of ImageMagick, we had to make the following changes to the project settings:

· Open the “ImageMagick\VisualMagick\VisualMagick.dsw” workspace file in Visual C++. Go to the Project / Settings dialog. Choose “All Configurations” in the “Settings For” box at the top left of the dialog. Select all of the ImageMagick projects listed in the listbox on the left side of the dialog. Go to the “General” tab in the dialog. In the “Microsoft Foundation Classes” box, choose “Use MFC in a Shared DLL”. (This is the easiest way to make sure that all builds use the right versions of the C runtime libraries.)

· While still in the Project / Settings dialog, change the project selection to include only the “Magick” and “MagickTIFF” projects. Go to the link tab in the dialog. In the “Object / library modules” box, add “user32.lib”. (The “user32.lib” library is needed for some of the functions used in these projects.)

· While still in the Project / Settings dialog, change the project selection to select the “ttraster.c” file in the “MagickTTF” project. In the “Settings For” box, select “Win32 Debug”. Go to the “C / C++” tab. Select “Optimizations” in the “Category” box. If needed, change the entry in the “Optimizations” box to “Disable (Debug)”.

· Close the Project / Settings dialog and choose “File / Save All” to save your changes to the ImageMagick project files (*.dsp).

You may also need to make the following change if you have problems building VisXImageMagick:

· Open the “xmd.h” file in the “xlib\include\x11” directory. Search for a line containing the statement “typedef long INT32”. There should be at most one such line. If you find a single line containing this statement, change it to read “typedef int INT32”. (This will prevent problems with a definition in one of the Windows header files.)

E. Using the Debug Memory Package

When Visual C++ is used to debug programs using the Vision SDK, messages will be written to the Debug Output window in MSDev.exe. When the program exits and the standard library exit code is executed, it will check for memory that was allocated in the program but never freed. If the standard runtime library code finds memory that was allocated but not freed, it will print the message “Detected memory leaks!” followed by lines describing the memory blocks that were not freed. All of these lines will include a number in curly brackets (“{}”). In addition, some of these lines may include a file name and line number preceding the number in curly brackets.

The numbers in curly brackets are the (one-based) indices of the memory allocations. If you have the standard library source code installed and these indices are repeatable, they can be used to find memory leaks. For example, let’s say your program always reports a memory leak with allocation number 44. Such a leak report might start with a line like:

{44} normal block at 0x00C51DE0, 40 bytes long.

It would be followed by a line describing the data at the start of the memory block. To find this allocation, open the dbgheap.c file in the “crt\src” directory in the Visual C++ directory. (For example, “c:\Program Files\Microsoft Visual Studio\VC98\crt\src”.) Search in the file for “_crtBreakAlloc”. It will be found in three functions, “_heap_alloc_dbg “, “realloc_help”, and “_CrtSetBreakAlloc”. Set breakpoints at the start of the “_heap_alloc_dbg “ function. Start debugging the program (“Build / Start Debug / Go” in Visual C++). When you break in the “_heap_alloc_dbg “ function, display the value of the global _crtBreakAlloc variable in the debug window. (It should be –1.) Change it to the index of the allocation that you want to find and clear the breakpoint. When the memory block is allocated, there will be a debug break. During the debug break, we can look at the call stack to find where the memory is being allocated.

To make it easier to find memory leaks in your code, you can put the following lines in your program’s CPP files (after all “#include” directives but before functions that allocate memory):

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif // _DEBUG

These lines will replace the new operator with a macro that will give file name and line information to the debug memory package. If memory allocated by operator new in a CPP file that includes these lines (before the memory allocation) is not freed, the debug memory package will include a file and line number when it describes the memory leak. If you see a memory leak report like this, you can double-click on the line describing the memory leak in the Debug Output window to open the file and go to the line where the memory was allocated.

Please remember that the file allocation a memory block that is reported as a leak may not be the cause of the leak. For example, if your program allocates but does not free an object that allocates memory in its constructor and frees memory in its destructor, the memory allocated in the object’s constructor will be reported as a leak even though there is not a problem in the object’s code (because it’s destructor frees the memory allocated in the constructor).

Because the Vision SDK projects build DLLs, there can be a problem where the runtime library exit code is called before the Vision SDK exit code. This can produce false memory leak reports in your program. To work around this problem, you can include the file “VisMemoryChecks.h” in one of you program’s CPP file (not in an H file or a precompiled header file). The Vision AppWizard does this for applications that it creates.

There are two other “false” memory leak reports that you may get using the Vision SDK. The reported memory blocks have low indices (44 and 45 on one of our machines) and are pretty small (40 and 33 bytes). You can ignore these memory leak reports. (Or you can debug them as described above to find that they involves global stream objects. They are reported because the runtime exit code is called before some other exit code.)

F. Other Image Representations

The version 1.2 release of the Vision SDK includes code to convert between CVisImage objects and some other common image representations. These classes and functions are not included in the documentation for the Vision SDK. If you want to use this code, you’ll probably need to look at the Vision SDK header files to understand how these classes and functions should be used.

F.1. Device Independent Bitmaps (DIBs)

The Vision SDK includes a CVisDib class declared in the “VisDib.h” file in the VisCore project. This header file also defines functions that can be used to convert between CVisDib objects and CVisImage objects.

F.2. Direct Draw Surface and DXSurface Interfaces

The IDirectDraw surface is used with the Microsoft DirectX APIs. The DXSurface interface is used with the Microsoft DirectX Transform APIs. The Vision SDK includes a header file named “VisDDrawConversion.h” in the VisCore project that declares functions that can be used to convert between these interfaces and CVisImage objects. In addition, the CVisImageBase class includes an overloaded Alias method that can be used to wrap a these interfaces in CVisImage objects.

F.3. Intel’s Image Processing Library’s IPLImage Representation

Intel’s Image Processing Library uses a structure named IPLImage to describe images. The Vision SDK includes functions declared in the “VisXIpl.h” file in the VisCore project to convert between CVisImageObjects and IPLImage structures. These functions will only work if you have installed Intel’s Image Processing Library (IPL). Here is example code that uses this code:

CVisRGBAByteImage image(200, 300);

// piplimage will use the same memory as image

IplImage *piplimage = VisIplCreateImage(image);

// imageAlias will use the same memory as piplimage

CVisRGBAByteImage imageAlias;

imageAlias.Alias(piplimage);

// Calls to VisIplCreateImage must be matched with calls to VisIplDeleteImage

VisIplDeleteImage(piplimage);

You could use this code to pass pointers and descriptions of the memory in CVisImage objects to the image-processing functions in Intel’s Image Processing Library.

G. The VisLocalInfo Project

The VisLocalInfo project builds a header file named “VisLocalInfo.h” in the Vision SDK inc directory. This header file contains preprocessor definitions that are used to build the Vision SDK. For example, this file indicates whether you’re building on Windows NT (or Windows 2000) or Windows 9x. It may also define constants indicating the location of external library files, like Intel’s Image Processing Library header files. You should not modify the “VisLocalInfo.h” file directly. If you want to modify the build settings, you can create a file named "VisUserSettings.h" in the Vision SDK inc directory and “Rebuild All” of the VisLocalInfo project. (The “Clean” command does not clean the VisLocalInfo project.)

If you install Intel’s Image Processing Library, you can copy the IPL header files to a subdirectory on the inc directory named “ipl” and “Rebuild All” of the VisLocalInfo project to define constants that will include information about the IPL header files when building the Vision SDK. You may need to do this to build the VisXIJL project.

H. Intel’s Image Processing Library (IPL) and JPEG Library (IJL)

As described in the appendix about other image representations, the Vision SDK includes some functions that can be used to pass pointers and descriptions of the memory in CVisImage objects to the image-processing functions in Intel’s Image Processing Library. The Vision SDK also includes a project named VisXIJL that can use Intel’s IJL library to read and write JPEG files. To use these features, you’ll need to install the Intel library (or libraries) that you want to use, copy the Intel IPL header files to a subdirectory on the inc directory named “ipl”, and “Rebuild All” of the VisLocalInfo project to define constants that will include information about the IPL header files when building the Vision SDK. Please note that your programs will need to link to the IPL library (ipl.lib) if they use IPL image-processing functions.

VisXCLAPACK

Use CLAPACK library for matrix operations

VisXIJL

Use Intel’s IJL library for file I/O

VisXRenderFil

Helper project (DirectShow filter)

VisXDS

Get images from DirectShow

VisMeteor

Get images from Matrox ® Meteor ® card

VisVFWCamera

Get images from Video for Windows

VisXImageMagick

Use ImageMagick library for file I/O

VisMatrix

4x4 vectors and matrices

General vectors and matrices

VisImSrc

Select a digitizer

Get images from a digitizer

VisDisplay

Display an image

Display a group of images

VisCore

Standard pixel types (gray, RGBA, YUVA)

Image class

Image Sequence class

Helper classes and functions

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �1�: The top left corner of the memory is addressed as (0,0). The gray pixels are not part of the image.

� Some formats can not be directly retrieved from an image source. In order to work in these formats you must first get the data in a supported format and then convert it (using CopyPixelsTo) to the desired format.

� Alpha is a measurement of transparency. Images captured from digitizers will not have this component initialized.

1
3

_952526005.doc
[image: image1.png]TOP

height =
BOTTOM - TOP

BOTTOM

mmmmn
|
|
|
|
|
|
]

LEFT

width =
RIGHT - LEFT

RIGHT

