
MFC Programmer’s Guide: Getting Started

MFC Programmer’s Guide: Getting Started 1

MFC PROGRAMMERS GUIDE ... 2
PREPARING THE DEVELOPMENT ENVIRONMENT FOR INTEGRATION 3
INTRODUCING APC... 4
GETTING VISUAL BASIC FOR APPLICATIONS INTO YOUR MFC PROJECT 6
USING THE APC APPLICATION CLASS.. 8
INITIALIZING VISUAL BASIC FOR APPLICATIONS .. 9
COORDINATING WINDOW MANAGEMENT WITH THE VISUAL BASIC FOR
APPLICATIONS IDE ... 10
DISPLAYING THE INTEGRATED DEVELOPMENT ENVIRONMENT 10
TERMINATING VISUAL BASIC FOR APPLICATIONS... 11
THE HOST OBJECT MODEL ... 12
CREATING THE GLOBAL APPLICATION CLASS... 14
CONNECTING THE GLOBAL APPLICATION OBJECT ... 15
ADDING PROJECT SUPPORT... 16
CREATING A DOCUMENT CLASS FOR YOUR PROJECT .. 17
ABOUT PROJECT STORAGE... 17
HANDLING SAVE NOTIFICATIONS.. 18
HALTING VISUAL BASIC FOR APPLICATIONS WHEN DOCUMENT CONTENTS ARE
DELETED ... 18
WHERE TO GO FROM HERE .. 19

MFC Programmer’s Guide: Getting Started 2

MFC PROGRAMMERS GUIDE

This guide is intended to acquaint you with the steps required to integrate
Microsoft® Visual Basic® for Applications version 6.0 into host applications
running on Microsoft Windows® 32-bit operating systems. It features the
Application Programmability Component (APC), which simplifies Visual Basic
for Applications integration. See Introducing APC for more information.

Prerequisites

To use APC effectively in MFC applications, you should be familiar with theTo use APC effectively in MFC applications, you should be familiar with the
following:following:

• Component Object Model (COM), which is the foundation of Automation
(formerly OLE Automation)

• Automation
• The Visual C++ programming language
• The Microsoft Foundation Class (MFC) Library

To get the most out of this guide, you should be familiar with the following:To get the most out of this guide, you should be familiar with the following:

• The Visual C++ programming language
• C++ programming using the Active Template Library (ATL)
• The Microsoft Windows 95 or Windows NT® programming environment
• COM
• Programming Automation servers

MFC Programmer’s Guide: Getting Started 3

PREPARING THE DEVELOPMENT ENVIRONMENT FOR INTEGRATION

To build an application enabled for Visual Basic for Applications using the
Visual C++ development environment, you will need to do the following:

• Install Microsoft Visual C++ version 5 (Service Pack 3 required) or later
• Install the Visual Basic for Applications 6.0 Software Development Kit
• Ensure that your list of directories include files contains the following

(assuming that C:\vba6sdk is your SDK install directory):
C:\vba6sdk\include
C:\Program Files\Common Files\Microsoft Shared\vba\vba6
C:\Program Files\Microsoft Office\Office

If you installed the debug version of Visual Basic for Applications 6.0, use
the following directories:

C:\vba6sdk\include
C:\Program Files\Common Files\Microsoft Shared
Debug\vba\vba6
C:\Program Files\Microsoft Office Debug\Office

• Ensure that your list of directories for library files contains the Visual
Basic for Applications library directory:

C:\vba6sdk\lib

Note:Note: To build applications from the command line, you must add these
directories to the INCLUDE and LIB paths in your command-line
environment.

MFC Programmer’s Guide: Getting Started 4

INTRODUCING APC

This section briefly describes the Microsoft Application Programmability
Component (APC), which is a COM object that simplifies integration of Visual
Basic for Applications. This section also steps through the key tasks
involved in using APC to integrate Visual Basic for Applications 6.0 into an
MFC application. APC exposes a number of Application Programming
Interfaces (APIs) on top of the core Visual Basic for Applications API to
handle tasks formerly done by the developer.

APC is recommended for integrating Visual Basic for Applications. Most
development environments that are capable of creating, calling, and
handling events from COM objects can integrate Visual Basic for
Applications.

To integrate APC into an MFC application, you need to provide minimal
support for ATL, expose your application to APC using Automation
interfaces, and override a few MFC methods and message handlers.

APC includes the following items and functionality:

• Automation interfacesAutomation interfaces that allow integration of Visual Basic for
Applications into applications written in Visual Basic.

• Template-based classesTemplate-based classes that ease integration of Visual Basic for
Applications into MFC and ATL applications. See "Template-Based
Classes," later in this topic, for more information.

• Default host interfacesDefault host interfaces that eliminate much of the work needed to
integrate Visual Basic for Applications into hosts written in C or C++.
These interfaces handle tasks such as instantiating Visual Basic for
Applications, managing project items, hosting controls, storing Visual
Basic for Applications projects, recording macros, and enabling
advanced features such as host classes and digital signing. See Getting
Visual Basic for Applications into your MFC Project.

• Message loop integrationMessage loop integration for all popular development platforms, such
as Visual Basic, C++, and MFC.

• An APC ReferenceAn APC Reference documenting each APC interface. To view the APC
Reference, go to the Contents section of the Visual Basic for
Applications SDK Help file (vba6sdk.chm).

MFC Programmer’s Guide: Getting Started 5

Template-Based ClassesTemplate-Based Classes
APC includes a set of template-based classes, defined in the SDK header
file ApcMfc.h, which make it easy to integrate Visual Basic for Applications
into an MFC application. These classes provide a number of base classes
that support Visual Basic for Applications MFC-style persistence, MFC-style
message loop handling, and MFC-style OLE control containment. By
overriding the default implementations in these base classes, you can
customize your integration with little effort. The SDK header file ApcCpp.h
provides support for non-MFC application, document, project item, and
control containment classes.

For details on the contents of APC, see the APC Reference in the Visual
Basic for Applications SDK Help file (vba6sdk.chm).

Using APCUsing APC
This guide is intended to show you how to:

• Display and hide the Visual Basic for Applications Integrated
Development Environment (IDE)

• Create Visual Basic for Applications projects and associate them with
your application’s documents

• Create, load, and store Visual Basic for Applications projects
• Expose your application’s object model to Visual Basic for Applications

end users

The example code here is based on Step 1 of the VBACalc sample program,
which integrates Visual Basic for Applications into a calculator program
similar to the one that comes with Windows. You can find the source code
for VBACalc in the \Samples\VBACalc directory of your distribution.

This is not intended to be a complete programmer’s guide to integrating
Visual Basic for Applications. Some of the techniques outlined here and
used in VBACalc have been chosen for simplicity, rather than completeness.

To add Visual Basic for Applications support to your own MFC project, you
must do, at a minimum the following:

• Integrate Visual Basic for Applications into your host application to the
point where it can display the IDE and run programs. See Getting Visual
Basic for Applications into Your MFC Project.

• Add storage support to Visual Basic for Applications so it can load and
store projects. See Adding Project Support.

MFC Programmer’s Guide: Getting Started 6

GETTING VISUAL BASIC FOR APPLICATIONS INTO YOUR MFC PROJECT

This section discusses the two main steps you need to integrate Visual
Basic for Applications into your own MFC program. This steps are adding
application-level support and adding project support.

An MFC program has an application class normally derived from the
standard MFC class CWinAppCWinApp. A Visual Basic for Applications-enabled MFC
program using APC should instead derive from the template class
CApcApplicationCApcApplication, to which you pass in a base application class (usually
CWinAppCWinApp) through the AppBaseAppBase template parameter. The term host
application class refers to such a CApcApplicationCApcApplication-derived template class.
This is to emphasize that APC is managed through its data member
ApcHostApcHost, which connects the AppBaseAppBase application member to APC.

The host application class also manages the lifetime of the global
application object, which is an Automation server that appears as part of
the project in Visual Basic for Applications code. Its functions can be made
available globally, without qualification and without requiring that the Visual
Basic for Applications user instantiate the global object.

Other tasks at the application level include managing window modes and
accelerators, displaying the IDE when users request, and making sure Basic
code has been halted before shutting down the IDE.

Adding project support is straightforward in an MFC application, because
the MFC template-based classes that come with APC contain a
CApcDocumentCApcDocument template class. The CApcDocumentCApcDocument base class provides the
overrides and implementations necessary to create, register, load, and save
projects using OLE storage if you pass in an MFC document class with
compound document support.

MFC Programmer’s Guide: Getting Started 7

To add application-level support:To add application-level support:

• Use CApcApplicationCApcApplication as the application class for your host. See Using
the APC Application Class.

• Use the CApcHost::ApcHost.CreateCApcHost::ApcHost.Create data member of your host
application class to initialize Visual Basic for Applications and pass in a
pointer to the global application class you will use for the host object
model. See Initializing Visual Basic for Applications.

• Ensure that your host manages its accelerators and window modes
properly by forwarding WM_ACTIVATE and WM_ENABLE messages to
APC. See Coordinating Window Management with the Visual Basic for
Applications IDE.

• Display the IDE when appropriate. See Displaying the Integrated
Development Environment.

• When the user shuts down Visual Basic for Applications, ensure that no
Basic code is executing, unwind the message loop stack, and give the
user a chance to save any unsaved standalone projects. This means
writing an OnCloseOnClose handler for the main frame window and calling
IApc::CanTerminateIApc::CanTerminate to check for unsaved standalone projects. See
Terminating Visual Basic for Applications.

• Shut down Visual Basic for Applications and clean up as appropriate.
Override the standard MFC method CWinApp::ExitInstanceCWinApp::ExitInstance to terminate
Visual Basic for Applications, and provide your own cleanup code. See
Terminating Visual Basic for Applications.

To add project support:To add project support:

• To find out more about adding support for projects and OLE storage,
see Adding Project Support.

MFC Programmer’s Guide: Getting Started 8

USING THE APC APPLICATION CLASS

To gain access to the root APC object, you should derive your MFC
Application class from the CApcApplicationCApcApplication template class.

MFC applications use a global instance of a class derived from CWinAppCWinApp to
manage the main message loop, coordinate the creation of frame windows,
and create documents from document templates. Your APC project should
use the CApcApplicationCApcApplication template class for this purpose. Doing so will
provide you with a member variable, ApcHostApcHost, within the class—a smart
pointer to the root APC object. Because CApcApplicationCApcApplication derives in part from
CWinAppCWinApp, all of your MFC application services are still available.

Your application class should be declared using CApcApplicationCApcApplication instead of
CWinAppCWinApp. It should also bring the APC namespace into scope for the header
file. CApcApplicationCApcApplication takes two template parameters. The first parameter is
the name of your MFC application class; the second is the name of the
class that CApcApplicationCApcApplication
should be derived from (i.e. your previous base class). The second
parameter is optional and defaults to CWinAppCWinApp.

To change your To change your CWinApp definition to CWinApp definition to CApcApplication:CApcApplication:

• Open the header file containing the declaration application class, which
in most MFC projects is a class deriving from CWinAppCWinApp.

• Add an MSAPC namespace declaration to the header file of the
application class, as in the following example: using namespace
MSAPC;

• Change the application class to derive from the CApcApplication
template class, as in the following example:
class CVBACalcApp : public CApcApplication<CVBACalcApp>

MFC Programmer’s Guide: Getting Started 9

INITIALIZING VISUAL BASIC FOR APPLICATIONS

The host application class is responsible for initializing Visual Basic for
Applications through the CApcHost::ApcHost.Create CApcHost::ApcHost.Create member function. It is
best to defer initialization until Visual Basic for Applications is needed.

The minimum parameters you should pass to ApcHost.CreateApcHost.Create include a
parent window handle, text for window captions (or NULL to use the caption
of the parent window), an IDispatch IDispatch pointer to a global automation object,
and a Visual Basic for Applications license key. The example that follows
passes in a temporary evaluation license key. In the application you ship, it
is necessary to pass in a valid license key, which you receive after executing
a license agreement with Microsoft. If you use the evaluation license key in
your shipping application, CreateCreate fails after the expiration date.

To begin the Visual Basic for Applications session using APC:To begin the Visual Basic for Applications session using APC:

The following example from CVBACalcApp::CreateAPCHostCVBACalcApp::CreateAPCHost illustrates the
use of CApcHost::ApcHost.CreateCApcHost::ApcHost.Create.

HRESULT hr = NOERROR;
 // Create Visual Basic for Applications. APC will call ApcHost.Destroy() on
application exit.
CString strAppName, strLicKey;
strAppName = m_pszAppName;

strLicKey =
"04054348435D545D5464B4ADD5EC32115371BE988D9CC4E3C413"

DWORD dwLCID = MAKELCID(m_nVBALanguage, SORT_DEFAULT);

hr = ApcHost.Create(GetMainWnd()->m_hWnd,
strAppName.AllocSysString(),

GetIApplication(FALSE),
strLicKey.AllocSysString(),
dwLCID);

if(FAILED(hr))
{

AfxMessageBox("Error initializing Visual Basic for Applications.");
return hr;

}
return hr;

MFC Programmer’s Guide: Getting Started 10

COORDINATING WINDOW MANAGEMENT WITH THE VISUAL BASIC FOR
APPLICATIONS IDE

Visual Basic for Applications tracks the active component so it can
coordinate accelerators and manage other window coordination, such as
the modality of UserForms. To manage the active component, you need to
forward the WM_ACTIVATE and WM_ENABLE messages to APC. The
following code provides the proper implementations of these event
handlers:

void CMainFrame::OnEnable(BOOL bEnable)
{

CFrameWnd::OnEnable(bEnable);
GetApp()->ApcHost.WmEnable(bEnable);

}
void CMainFrame::OnActivate(UINT nState,CWnd* pWndOther,BOOL
bMinimized)
{
CFrameWnd::OnActivate(nState, pWndOther, bMinimized);
GetApp()->ApcHost.WmActivate(nState);
}

void CVBACalcApp::OnVbaIde()
{
if(ApcHost)
CApcApplication<CVBACalcApp>::OnVbaIde();
}

DISPLAYING THE INTEGRATED DEVELOPMENT ENVIRONMENT

A single member function allows you to display the Visual Basic for
Applications integrated development environment (IDE).

To display the IDE:
• Call CApcApplication::OnVbaIdeCApcApplication::OnVbaIde as follows:

MFC Programmer’s Guide: Getting Started 11

TERMINATING VISUAL BASIC FOR APPLICATIONS

Quitting Visual Basic for Applications requires you to ensure that no
message loops are on the stack, that no end user Basic code is running,
and that no standalone projects need to be saved before quitting.

To ensure that no message loops are on the stack, use
CApcHost::ApcHost.WmCloseCApcHost::ApcHost.WmClose, which notifies APC of a WM_CLOSE event on
the main window and lets you query the state of Visual Basic for
Applications execution. The fTerminated parameter of
CApcHost::ApcHost.WmCloseCApcHost::ApcHost.WmClose returns TRUETRUE if it is safe to terminate running
code, and FALSEFALSE if Visual Basic for Applications is still unwinding the stack.
Continue posting WM_CLOSEWM_CLOSE messages in the FALSEFALSE case.

CApcApplicationCApcApplication overrides CWinApp::ExitInstanceCWinApp::ExitInstance to destroy Visual Basic for
Applications, close down Visual Basic for Applications in an orderly fashion,
and allow you to perform any cleanup necessary during application
shutdown. If you override ExitInstanceExitInstance, make sure you call this base class
version from your override.

Any copy of Visual Basic for Applications can be used for standalone
projects, whether or not the version you licensed supports them. Users can
upgrade Visual Basic for Applications at any time to Microsoft Office
Developer, which supports the creation of standalone projects. Before
exiting, the host should therefore call IApc::CanTerminateIApc::CanTerminate, which checks
each standalone project and saves if necessary. In the event of a save, a
dialog box asks if the user wishes to save the project. If IApc::CanTerminateIApc::CanTerminate
returns VARIANT_TRUEVARIANT_TRUE, either no standalone projects existed or the user
didn’t wish to save them, and the host may continue exiting.

MFC Programmer’s Guide: Getting Started 12

To close down Visual Basic for Applications:To close down Visual Basic for Applications:

• Write an OnClose handler for the application’s top-level frame window.
OnClose is the standard MFC member function called when an
application is about to terminate.

• Call IApc::CanTerminateIApc::CanTerminate to determine whether the user wishes to save
any unsaved code in standalone projects. This code is called from
CMainFrame::OnCloseCMainFrame::OnClose in the following VBACalc example:

BOOL bTerminated;
GetApp()->ApcHost.WmClose(bTerminated);
if(!bTerminated) {
// unwind stack and try again
PostMessage(WM_CLOSE, 0, 0);
return;
}
// Prompt the user to save changes

if(!!GetApp()->ApcHost)
{
VARIANT_BOOL bCanTerminate;
GetApp()->ApcHost->APC_RAW(CanTerminate)(&bCanTerminate);
if (bCanTerminate == VARIANT_FALSE)
return;
}
CFrameWnd::OnClose();

• If you override CWinApp::ExitInstanceCWinApp::ExitInstance in your application, be sure to call
the proper base class version of it from your override:

int ret = CApcApplication<CVBACalcApp>::ExitInstance();
...

return ret;

To make sure no Visual Basic for Applications end user code is running:To make sure no Visual Basic for Applications end user code is running:
• To halt execution of the end user’s Visual Basic for Applications project,

call IApc::EndIApc::End. A good place to do this is in your implementation of the
standard MFC MFC CDocument::DeleteContentsCDocument::DeleteContents method, which is called
when you delete the data in your document. The following example
from VBACalc’s CalcDoc.cpp file illustrates this:

if(!!((CVBACalcApp*)AfxGetApp())->ApcHost)
{
((CVBACalcApp*)AfxGetApp())->ApcHost->APC_RAW(End)(NULL);
...

THE HOST OBJECT MODEL

MFC Programmer’s Guide: Getting Started 13

Your application may provide an object model to the Visual Basic for
Applications end user. The root object of its hierarchy is called a global
application class, which is an Automation server that can be built in any
manner supporting IDispatchIDispatch. The name of the root Automation object in
these examples, and in most commercial products that use Visual Basic for
Applications, is ApplicationApplication. The ApplicationApplication object is normally tagged as an
appobject in the type library, meaning that the Visual Basic for Applications
end user does not need to declare it or even precede its method
invocations with the CoClass name, ApplicationApplication. For example, if the
ApplicationApplication object has a method named VersionVersion that returns a version
number, it can be invoked from end user code as follows:
Debug.Print Version

The instance of the global application class that is connected to the host at
run time is called the global application object.

The suggested technique for writing your global application class is to use
the ApcDualApcDual template classes for the creation of this object in an MFC
application. Doing this keeps the COM interfaces and MFC implementation
in separate or "peer" classes.

An alternative to using ApplicationApplication is to use MFC’s CCmdTargetCCmdTarget. However,
the default implementation of such objects in MFC does not supply the type
of information needed by Visual Basic for Applications, and will need
modification to work properly. Further, using the ApcDualApcDual template classes
provides dual interface support for your COM objects—a significant
performance benefit.

MFC Programmer’s Guide: Getting Started 14

The following steps are required to add a global automation object to your
host application:

• Declare a global application class and its associated COM interface
class using the ApcDualApcDual interface classes. The object model class is
derived from the standard MFC CCmdTargetCCmdTarget Automation class, and is
passed into the CApcDualAggCApcDualAgg template class. See Creating the Global
Application Class.

• Inherit the MFC class from either the CApcDualAggCApcDualAgg or the CApcDualDynCApcDualDyn
template class. Pass the inherited class as a template argument to the
ApcDualApcDual class.

• Declare the COM class using ATL, or use the ATL Object Wizard.
• Implement IApcDualIApcDual in the ATL class by inheriting from IApcDualImplIApcDualImpl.
• Implement IDispatchIDispatch in the ATL class.
• Implement IProvideClassInfoIProvideClassInfo in the ATL class.
• Connect the global automation object by passing its IDispatchIDispatch to APC at

creation time. See Connecting the Global Application Object.

CREATING THE GLOBAL APPLICATION CLASS
The host object model can be a CCmdTargetCCmdTarget-derived Automation server that
uses the ApcDualApcDual template classes to provide the COM interface in a
separate class, as in the VbaCalc sample. (It can also be a straight ATL
class or any other implementation of the interface.) By convention, the
name of this CoClass, as it appears to the Visual Basic for Applications
programmer, is ApplicationApplication. The internal names of the C++ classes in the
example code reflect this.

In this example, the matching ApcDualApcDual class used to expose member
functions of class CApplicationCApplication as Automation servers is CAtlApplicationCAtlApplication.
See “Using the APC Dual Template Classes” for more information on how
these classes interact.

To declare the object model class:To declare the object model class:

• Derive your CApplicationCApplication class from the MFC CCmdTargetCCmdTarget class, its
matching CAtlApplicationCAtlApplication class, and the IDispatchIDispatch-derived
IDualApplicationIDualApplication class, as in the following example:

class CApplication : public CApcDualAgg<CCmdTarget, CAtlApplication,
IDualApplication, &IID_IDualApplication>
{
…

MFC Programmer’s Guide: Getting Started 15

CONNECTING THE GLOBAL APPLICATION OBJECT

When Visual Basic for Applications is initialized via
CApcHost::ApcHost.CreateCApcHost::ApcHost.Create, you are given a chance to pass in a global
application class. In the VBACalc example, the host application class has a
member function, GetIApplicationGetIApplication, which returns the IDispatchIDispatch for the global
application class.

To connect the global application object to the host application class atTo connect the global application object to the host application class at
initialization time:initialization time:

• Pass the global application object in to the pDisp parameter (the third
argument in the example below) to CApcHost::ApcHost.CreateCApcHost::ApcHost.Create as
follows:

hr = ApcHost.CreateGetMainWnd()->m_hWnd,
strAppName.AllocSysString(),
GetIApplication(FALSE),
NULL,
dwLCID);

For more information on initialization, see Initializing Visual Basic for
Applications.

MFC Programmer’s Guide: Getting Started 16

ADDING PROJECT SUPPORT

A Visual Basic for Applications project is a collection of project items, their
interactive behavior, and their code. Project items are the building blocks of
a project. They include forms, classes, modules, class modules, host-
provided project items such as host modules (sometimes called document
project items), and—new in Visual Basic for Applications 6.0—host classes
with code behind them. The project controls how project items interact and
communicate. The host provides storage and management for the project
(if desired) and for the host’s own persisted data. Throughout this
Programmer’s Guide, the term document by itself refers to the host’s
persisted data, which includes the Visual Basic for Applications project.

Visual Basic for Applications expects you to persist projects using COM’s
structured storage via IPersistStorageIPersistStorage. Because a Visual Basic for
Applications project can be saved into an MFC document which uses
structured storage and a similar storage management scheme, APC
provides a template class called CApcDocumentCApcDocument. This makes project
persistence convenient and familiar to MFC programmers. Using
CApcDocumentCApcDocument gives you project management and storage in a convenient,
tested package.

Note:Note: Placing both your host’s data and the project in the same file is one
method of saving a project, but you are not required to store a project in
the same file as your document. You don’t even need to save it in physical
storage; for example, you can provide project storage in memory for the
current session only, freeing it when the user quits or a different project is
loaded.

You will need to take the following steps to add project support using
CApcDocument:

• Create a document class for your project. The easiest way to do this is
to use CApcDocumentCApcDocument. See Creating a Document Class for Your Project.

• Provide storage for your project. This is part of the implementation of
CApcDocumentCApcDocument. See Creating Storage for Your Project.

• Allow the user to save the project at will by choosing SaveSave from the FileFile
menu or clicking the SaveSave button. See Handling Save Notifications.

MFC Programmer’s Guide: Getting Started 17

CREATING A DOCUMENT CLASS FOR YOUR PROJECT

In an AppWizard-created MFC project with Automation support, the project’s
document class normally derives from COleServerDocCOleServerDoc. The APC MFC
framework, however, provides its own template class, CApcDocumentCApcDocument, to
create, register, load, and save projects.

Using CApcDocumentCApcDocument means that the overrides of the MFC document
methods, such as OnNewDocumentOnNewDocument that it provides, automatically create,
register, load, and save the APC project and its contents. The second
template parameter of CApcDocumentCApcDocument derives from the MFC class you
used. It defaults to COleServerDocCOleServerDoc, so if you had previously derived from
that, you can omit the second parameter, as in the example below. This
inserts CApcDocumentCApcDocument into the proper place in your hierarchy. You must
derive at least from COleDocumentCOleDocument to get MFC’s compound document
support.

To create a document class deriving from To create a document class deriving from CApcDocument:CApcDocument:

• Change your MFC document class to derive from the CApcDocument
template document class, and pass your class name into it. In the
example below, the class name is CVBACalcDocCVBACalcDoc, and COleServerDocCOleServerDoc is
the implied second template parameter.

class CVBACalcDoc : public CApcDocument<CVBACalcDoc>

ABOUT PROJECT STORAGE

Visual Basic for Applications requires an OLE storage object for a project
when it starts up, but MFC applications typically defer the creation of a
storage object until the document is saved. The APC MFC framework
provides an implementation of the virtual OnNewDocumentOnNewDocument method.

The CApcDocument base class implementations of OnNewDocumentOnNewDocument,
SaveToStorageSaveToStorage, and LoadFromStorageLoadFromStorage handle the actual creation and
persistence of the document to a storage object.

MFC Programmer’s Guide: Getting Started 18

HANDLING SAVE NOTIFICATIONS

When an end user chooses SaveSave from the FileFile menu or clicks the SaveSave
button in the IDE, the ApcProject_SaveApcProject_Save event fires. You should handle this
in your host in such a way that the end user can save at will.

To implement the To implement the ApcProject_Save event handler:ApcProject_Save event handler:

• Write a Save handler in your document class to persist the project on
demand. The following code illustrates one way of doing this.

HRESULT CVBACalcDoc::ApcProject_Save()
{
OnFileSave();
return NOERROR;
}

HALTING VISUAL BASIC FOR APPLICATIONS WHEN DOCUMENT CONTENTS ARE
DELETED

MFC calls its CDocument::DeleteContentsCDocument::DeleteContents member function just before a
document is destroyed. For example, DeleteContents DeleteContents is called from
CDocument::OnCloseDocumentCDocument::OnCloseDocument after the view has been closed and the
document’s data can be cleaned up, and just before
CDocument::OnNewDocumentCDocument::OnNewDocument to ensure that the document is empty.
Before calling DeleteContentsDeleteContents, the host should ensure that that Visual Basic
for Applications execution has been halted by calling IApc::EndIApc::End.

To call the APC To call the APC DeleteContents implementation:DeleteContents implementation:

• The following code demonstrates how VBACalc halts Visual Basic for
Applications and calls the APC base class implementation of
DeleteContentsDeleteContents. In this example, the application class is CVBACalcAppCVBACalcApp.

void CVBACalcDoc::DeleteContents()
{
// Stop Visual Basic for Applications execution
if(!!((CVBACalcApp*)AfxGetApp())->ApcHost)
{
((CVBACalcApp*)AfxGetApp())->ApcHost->APC_RAW(End)(NULL);
}
CApcDocument<CVBACalcDoc>::DeleteContents();
}

MFC Programmer’s Guide: Getting Started 19

WHERE TO GO FROM HERE

Once you are ready for more advanced Visual Basic for Applications
features, you may have questions that go beyond the scope of this guide.
We strongly recommend you contact your authorized Visual Basic for
Applications agent, who can provide you with technical support on your
integration and discuss various integration models. See Other Resources
for Visual Basic for Applications in the Welcome Guide for authorized agent
contact information.

MFC Programmer’s Guide: Getting Started 20

Information in this document is subject to change without notice. Companies, names, and data

used in examples herein are fictitious unless otherwise noted. No part of this document may

be reproduced or transmitted in any form or by any means, electronic or mechanical, for any

purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other

intellectual property rights covering subject matter in this document. The furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other

intellectual property rights except as expressly provided in any written license agreement from

Microsoft.

© Copyright 1999 Microsoft Corporation. All rights reserved.

Microsoft, MS, Visual Basic, Windows, Windows NT, Win32, Win32s, and Visual C++ are either

registered trademarks or trademarks of Microsoft Corporation in the USA and/or other

countries.

